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Abstract. In this paper we consider finite families of convex sets
in Rd such that every d or less sets of the family have a common
point. For some families of this type we give upper bounds on the
size of a finite set intersecting all sets of the family.

1. Introduction

We consider finite families of convex sets in Rd such that every d or
less sets have a common point. We are interested in the minimal size
of a finite set in Rd having common point with every member of the
family.

We begin with several definitions:

Definition. t-transversal for a family of sets F is a set T of cardinality
t such that ∀S ∈ F S ∩ T 6= ∅.

Definition. Minimal t such that a t-transversal of the family F exists
is called transversal number or piercing number of F , and denoted
τ(F).

Definition. A family of sets F has property Πk if for any nonempty
G ⊆ F such that |G| ≤ k the intersection

⋂
G is not empty.

Helly’s theorem states that Πd+1 implies τ(F) = 1 for any finite
family F of convex sets in Rd.

We can see that the case of Πd property in Rd is the closest to the
case of Helly’s theorem, and we may expect reasonable upper bounds
for τ(F) here. Of course, the example of hyperplanes in general position
shows that Πd property alone cannot guarantee any bound on τ(F).
Hence we have to impose some limitations on family F to obtain some
bounds for the piercing number. In this paper we mostly consider
families of homothets or translates of some compact convex set.
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From here on we consider finite families of closed convex sets in Rd

(d ≥ 2) having property Πd. We show that for for certain families Πd

property implies τ(F) ≤ d + 1. We also give a linear in d upper bound
for the piercing number of families of euclidean balls in Rd with Πd

property.
The simplest result of this type (Grünbaum’s conjecture) was proved

by the author in [4]:

Theorem 1. Let F be a family of translates of a two-dimensional
convex compact set. If F has property Π2 then τ(F) ≤ 3.

In this paper we use the same main idea as in [4]. But the way of
reasoning was quite cleared up, which lead to several more results.

Theorem 2. Let F be a family of homothets of a centrally symmetric
convex compact set in R2 and let any two sets in F be no more than
two times different in size. If F has property Π2 then τ(F) ≤ 3.

In [3] Grünbaum proved the upper bound τ(F) ≤ 7 without any size
constraint. Theorem 2 gives less piercing number with size constraint.
The bound τ(F) ≤ 3 in this theorem is tight, it is well-known that it
is tight even for families of equal unit disks.

Using the same technique we prove another result of this kind for
euclidean balls in Rd:

Theorem 3. Let F be a family of Euclidean balls in Rd with radii no
more than d times different. If F has property Πd then τ(F) ≤ d + 1.

The existence of (d + 1)-transversal for a family of equal balls with
Πd property is proved in [1].

Theorem 3 generalizes this result for families of balls with size con-
straint. The author is not sure that the bound τ(F) ≤ d + 1 in Theo-
rem 3 is tight.

Using this result we can give an upper bound on the piercing number
of a family of balls in Rd with Πd property without any size constraint:

Theorem 4. Let F be a family of Euclidean balls in Rd. If F has
property Πd then τ(F) ≤ 3(d + 1) when d ≥ 5 and τ(F) ≤ 4(d + 1)
when d ≤ 4.

It seems that the bound in this theorem can be improved, especially
for small d. In case of d = 2 Theorem 4 gives τ(F) ≤ 12, while Danzer’s
result (see [1, 2]) gives τ(F) ≤ 4.

For a family of positive homothets of a simplex in Rd we have bound
d + 1 without size constraints:
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Theorem 5. Let F be a family of positive homothets of a simplex in
Rd. If F has property Πd then τ(F) ≤ d + 1.

The author does not know whether Theorem 5 gives tight upper
bound on the piercing number for d > 2. For d = 2 the bound is tight
even for families of equal triangles. In this case the piercing problem
is equivalent to the following covering problem: if every two points of
a closed set S ⊂ R2 can be covered by a translate of triangle T , then S
can be covered by 3 translates of T . Taking S = −T we can see that 3
translates are necessary. Here the set S is infinite, but by the standard
compactness reasoning some its finite subset still needs 3 translates of
T to be covered.

Theorem 3 can be generalized to the case when the sets in the family
do not have to be homothets of each other. We need some definitions
to formulate the result.

Definition. A convex compact set in Rd is called R-upper convex if it
is an intersection of balls of radius R.

Definition. A convex compact set in Rd is called R-lower convex if it
is a union of balls of radius R.

Theorem 6. Let F be a family of convex compact sets in Rd. Let every
set in F be R-lower convex and dR-upper convex for some constant
R > 0. If F has property Πd then τ(F) ≤ d + 1.

The following question remains open: whether the upper bound
τ(F) ≤ d + 1 (or some other linear in d bound) is true for families
of translates of a convex compact set.

2. Some consequences of Πd property

To prove theorems in this paper we explicitly construct a (d + 1)-
element set and prove that this is a transversal for F .

This construction only uses Πd property of some family F of convex
closed sets in Rd, but it does not give a transversal of F in the general
case.

First we define a family of halfspaces that can test the non-existence
of a common point of a family F of compact convex sets.

Definition. Let {K1, K2, . . . , Kd+1} ⊆ F . A family of halfspaces

{H1, H2, . . . , Hd+1},
where for any i = 1, . . . , d+1 Ki ⊆ Hi is called test family of halfspaces
for family F .
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Definition. If a test family of halfspaces for F has an empty intersec-
tion we call it non-intersecting test family of halfspaces.

We need some lemmas:

Lemma 1. Let F have Πd property. Then for every non-intersecting
test family of halfspaces {H1, H2, . . . , Hd+1} for F the set

S(H1, H2, . . . , Hd+1) = cl

(
Rd \

d+1⋃
i=1

Hi

)
is a simplex.

Proof. The family H = {H1, H2, . . . , Hd+1} has empty intersection
while every its proper subfamily have a common point. Let for i =
1, . . . , d + 1

xi ∈
⋂
j 6=i

Hj.

If the points {xi}d+1
i=1 does not make a simplex then they lie in a

d − 1-dimensional hyperplane and by the Radon’s theorem the set of
indices [d + 1] can be partitioned into I1 and I2 so that there exists

x ∈ conv{xi}i∈I1 ∩ conv{xi}i∈I2 ,

but in this case x ∈
⋂
H.

Hence {xi}d+1
i=1 make a simplex S and halfspaces Hi contain its re-

spective facets. If the family H cover S then by Sperner’s lemma⋂
H ∩ S 6= ∅, which is not true. Thus we have a point

x ∈ int S ∀i = 1, . . . , d + 1 x 6∈ Hi.

Consider some y ∈ Rd \ S. If y is not contained in any halfspace
of H then the segment [x, y] does not intersect any halfspace of H
(this is true because the complement to a halfspace is convex). Hence
z = [x, y] ∩ bd S is not contained in any of H, This is a contradiction
with the fact that bd S is covered by H.

So we have Rd\S ⊆
⋃
H and S(H1, H2, . . . , Hd+1) = cl

(
Rd \

⋃d+1
i=1 Hi

)
is a polytope with nonempty interior and d + 1 facets, so it has to be
a d-dimensional simplex. �

Lemma 2. If a family F with Πd property does not have non-intersecting
test family of halfspaces then

⋂
F 6= ∅.

Proof. If |F| ≤ d the statement is obvious.
Otherwise, by Helly’s theorem we find K = {K1, K2, . . . , Kd+1} ⊆ F

such that
⋂
K = ∅.
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Let for i = 1, . . . , d + 1 Li denote the set of linear functions l(x)
such that l(x) ≤ 0 for all x ∈ Ki. By the standard properties of convex

duality, if
⋂
K = ∅ then the constant function l(x) ≡ 1 ∈ conv

⋃d+1
i=1 Li.

Equivalently, there are non-negative numbers {ai}d+1
i=1 and functions

{li}d+1
i=1 (li ∈ Li ∀i = 1, . . . , d + 1) such that

1 =
d+1∑
i=1

aili(x).

Denote Hi = {x : li(x) ≤ 0}. These sets have no common point
since in the common point the above equality cannot hold. For all
i = 1, . . . , d + 1 Ki ⊆ Hi and each Hi is either a halfspace or coincides
with the whole Rd. If we substitute those Hi’s that are equal to Rd

by arbitrary halfspaces containing respective Ki’s, we obtain a non-
intersecting test family of halfspaces. �

Lemma 3. Let the family F have Πd property. Then either τ(F) = 1
or there exists such a non-intersecting test family of halfspaces {H1, H2, . . . , Hd+1}
that the volume of S(H1, H2, . . . , Hd+1) is maximal over all non-intersecting
test families of halfspaces.

Proof. If there is no non-intersecting test family of halfspaces then by
Lemma 2 τ(F) = 1.

In the other case it is sufficient to show that for every fixed subfamily

K = {K1, K2, . . . , Kd+1} ⊆ F
with empty intersection the maximum of vol S(H1, H2, . . . , Hd+1) over
all non-intersecting test families H = {H1, H2, . . . , Hd+1} correspond-
ing to K is reached. This is sufficient to prove the lemma since the
number of subfamilies K is finite.

Any d sets of family K have nonempty intersection, so we find for all
i = 1, . . . , d + 1

xi ∈
⋂
j 6=i

Ki.

As in the proof of Lemma 1

S(H1, H2, . . . , Hd+1) ⊆ conv{x1, x2, . . . , xd+1},
hence vol (S(H1, H2, . . . , Hd+1)) is bounded.

It is clear that if we take instead of Hi the unique inner support halfs-
pace for Ki contained in Hi the volume of S(H1, H2, . . . , Hd+1) becomes
larger. Every support halfspace of Ki is determined by its unit normal
vector ni, so the variety of the families of support halfspaces to the sets
of K has the topology of a cartesian product of d + 1 unit spheres. We
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consider the subset X of this space that corresponds to non-intersecting
test families for K. The vertices of S(H1, H2, . . . , Hd+1) and its volume
are continuous functions on X.

Let supX vol (S(H1, H2, . . . , Hd+1)) = 2ε > 0. Then we can easily
check that the variety of non-intersecting test familiesH = {H1, H2, . . . , Hd+1}
such that

vol (S(H1, H2, . . . , Hd+1)) ≥ ε

is closed, hence the volume takes its maximum value 2ε at some point
of X. �

The above lemmas allow us to make a definition:

Definition. Let F be a finite family of convex closed sets in Rd with
Πd property and let

⋂
F = ∅. Denote the simplex S(H1, H2, . . . , Hd+1)

with maximal volume for some non-intersecting test family of halfs-
paces {H1, H2, . . . , Hd+1} by S(F). Denote the convex hull of the mass
centers of facets of S(F) by s(F).

The importance of these simplices is explained by the following lemma:

Lemma 4. Let F be a finite family of convex closed sets in Rd with
Πd property having no common point. In this case for any S ∈ F
S ∩ s(F) 6= ∅.

To prove Lemma 4 we need another lemma:

Lemma 5. Let S be a simplex in Rd with vertices {v1, v2, . . . , vd+1},
let S ′ be a simplex with vertices {v′1, v′2, . . . , v′d, vd+1}. Let points v′i
(i = 1, . . . , d) lie on the rays vd+1vi respectively. If int S ′ contains the
mass center of {v1, . . . , vd} then vol S ′ > vol S.

Proof. Take a coordinate frame with origin vd+1 and base

{v′1 − vd+1, v
′
2 − vd+1, . . . , v

′
d − vd+1},

let i-th coordinate of vi be xi. If int S ′ contains the mass center of
{v1, . . . , vd} then

d∑
i=1

xi < d,

and by the mean inequality
∏d

i=1 xi < 1, which implies vol S ′ > vol S.
�

Proof of Lemma 4. Consider the subfamily

K = {K1, K2, . . . , Kd+1} ⊆ F ,
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corresponding to the non-intersecting test family of halfspaces

H = {H1, H2, . . . , Hd+1},

where S(F) = S(H1, H2, . . . , Hd+1). Denote the respective vertices of
S(F) and s(F) by {v1, v2, . . . , vd+1} and {w1, w2, . . . , wd+1}.

The volume of S(F) is maximal, so each Ki has to touch its respective
facet of S(F).

Assume the contrary: Ki does not intersect s(F).
Let Ci be a cone with vertex wi spanned by rays wiwj (j 6= i). Ki

cannot intersect Ci because these sets are separated by bd Hi and could
only have intersection in wi ∈ s(F).

Then there exists a halfspace H ′
i ⊇ Ki such that H ′

i ∩ Ci = ∅. The
family of halfspaces (H\{Hi})∪{H ′

i} is non-intersecting (
⋂

j 6=i Hi ⊆ Ci)
and is a test family. By Lemma 5

vol S(H1, . . . , H
′
i, . . . , Hd+1) > vol S(F)

and we have a contradiction.
Now take K ∈ F \ K. Assume that K ∩ s(F) = ∅.
There exists a halfspace H ⊇ K that does not intersect s(F). H 6⊇

S(F) and we find the farthest from H vertex of S(F) and denote it vi.
Then

⋂
j 6=i Hj is a cone spanned by the rays that has their origins

at vi and do not intersect H. Hence H ∩
⋂

j 6=i Hj = ∅ and the family

(H\{Hi})∪{H} has no common point. Considering simplices S((H\
{Hi}) ∪ {H}) and S(F) we again come to contradiction by Lemma 5.

�

We need another lemma to prove Theorem 4:

Lemma 6. Suppose we have a simplex S in Rd (d ≥ 5), its outer
halfspaces corresponding to facets being H = {H1, H2, . . . , Hd+1}. Let
a ball B of radius R together with the family H give a family with
Πd property. Then the radius r of the ball inscribed in S satisfies the
inequality

r ≤ 1

bd+1
2
c − 1

R ≤ 1/2R.

Proof. Let the vertices of S be {v1, v2, . . . , vd+1}. Consider the orthog-
onal projection p : Rd → V taking pairs {v1, v2}, {v3, v4}, and so
on to single points. If d + 1 is odd let p take vd−1, vd, vd+1 into one
point, otherwise, p takes pairs into single points. We have a simplex
S ′ = p(S) with d′ +1 = bd+1

2
c vertices, let its outer halfspaces of facets

be H′ = {H ′
1, H

′
2, . . . , H

′
d′+1}. We also have a ball B′ = p(B).
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In the barycentric coordinates {x1, x2, . . . , xd+1} of S and {y1, y2, . . . , yd′+1}
of S ′ the map p is given by:

y1 = x1 + x2

y2 = x2 + x3

. . .

yd′+1 = xd + xd+1 or yd′+1 = xd−1 + xd + xd+1.

It is easy to see that B′ has a common point with every family
H′ \ {H ′

i}. These common points form a simplex containing S ′, hence
B′ contains S ′.

Then we make a homothety with center at the mass center of S ′ and

scale ratio − 1

d′
. It takes B′ to the ball B′′ of radius 1

d′ R that intersects

all facets of S ′. So the radius of the inscribed ball of S ′ cannot be
larger than 1

d′ R, since the inscribed ball is the ball of minimal radius
intersecting all the facets of the simplex.

Hence the radius of the inscribed ball of S cannot be larger than 1
d′ R

too. �

3. Concave simplices of curvature radius R

We give some definitions:

Definition. Let a family{B1, B2, . . . , Bd+1} of euclidean balls of radius
R and centers {o1, o2, . . . , od+1} in Rd have the following property: ev-
ery d balls have a common point while the whole family has no common
point. In this case we call the set

cl

(
conv{o1, o2, . . . , od+1} \

d+1⋃
i=1

Bi

)
a concave simplex of curvature radius R.

In the plane we consider arbitrary norm ‖·‖ and give a non-euclidean
version of the above definition:

Definition. Let a family {B1, B2, B3} of balls of radius R and centers
{o1, o2, o3} w.r.t. norm ‖ · ‖ in the plane have the following property:
every 2 balls intersect while the whole family has no common point.
The set

cl

(
conv{o1, o2, o3} \

3⋃
i=1

Bi

)
is called a concave simplex of curvature radius R in norm ‖ · ‖.
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By Sperner’s lemma the simplices defined above are nonempty, oth-
erwise the family should have a common point.

We could define a concave simplex for arbitrary norm in any dimen-
sion, but in general they do not have the properties we want because
the bounded connected component of Rd \

⋃d+1
i=1 Bi does not have to lie

in conv{o1, o2, . . . , od+1} for d > 2.
We prove several lemmas about concave simplices of curvature radius

R. Unless specially noted, our reasoning is valid for both the cases of
an arbitrary two-dimensional norm and the euclidean norm in Rd.

Definition. Let T be a concave simplex in Rd. A vertex of T is a
point on its boundary that belongs to boundaries of exactly d balls
that determine T .

Lemma 7. Let T be a concave simplex of curvature radius R. Then
1) int T does not intersect the boundary of S = conv{o1, o2, . . . , od+1};
2) T is contained in the convex hull of its vertices;
3) the number of vertices of T is d + 1.

Proof. The first statement can be deduced from the fact that each
facet of S is contained in a union of balls of radius R with centers in
the vertices of the facet.

Each extremal point of T has to be its vertex, hence T is contained
in the convex hull of its vertices.

Each vertex of T corresponds to the intersection of d spheres of radius
R. Centers of these spheres make a facet F of S. If the spheres have
two intersection points then their intersection points lie on different
sides of the hyperplane of F , so only one of the points can be a vertex
of T . In the case of the plane, when the balls are not strictly convex,
the intersection of the spheres can be a line segment. But in this case
a vertex of T is necessarily in the end of the segment and one of the
ends is on the other side of F .

Finally we have no more than d+1 vertices of T , their number cannot
be less because int T 6= ∅. �

Lemma 8. A concave simplex T of curvature radius R in two-dimensional
case has diameter no more than R in the norm ‖ · ‖; in d-dimensional
case it has diameter no more than 2√

d2−1
R < R.

Proof. In two-dimensional case T lies in the triangle formed by mid-
points of sides of triangle o1o2o3, therefore its diameter does not exceed
R.

In the case of euclidean balls consider the point o equidistant from
o1, o2, . . . , od+1. It is not contained in any of the balls Boi

(R) and is
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contained in conv{o1, o2, . . . , od+1}, hence, o ∈ T . The result of Danzer
(see Theorem 6.8 in [1]) implies that |ooi| ≤ d√

d2−1
R.

The length of any tangent from o to the ball Boi
(R) does not exceed

1√
d2−1

R and any line segment from o to a point on bd Boi
(R) that does

not intersect int Boi
(R) has length no more than 1√

d2−1
R.

Every vertex v of T lies on the radical axis of some d balls, this
radical axis passes through o, thus all segments ov lie in T and do not
intersect int Boi

(R). Hence all segments ov have length no more than
1√

d2−1
R, which implies the statement of the lemma. �

Lemma 9. A ball of radius R′ ≥ R intersects a concave simplex T of
curvature radius R iff it contains some vertex of T .

Proof. Consider all the balls of radius R′ that intersect T . Denote the
set of their centers by X.

Consider all the balls of radius R′ that contain some vertex of T .
Denote the set of their centers by Y . It is clear to see that

Y =
d+1⋃
i=1

Boi
(R′).

By Lemma 8 diam T ≤ R and each ball Boi
(R′) contains T . Thus Y

is star-shaped with any center in T . Similarly, X is star-shaped with
any center in T . To prove the inclusion X ⊆ Y we only have to prove
that bd X ⊆ Y .

Let x ∈ bd X and B = Bx(R
′). Clearly B∩int T = ∅ and B∩bd T 6=

∅.
Consider the case of the euclidean norm first.
Let y ∈ bd X∩B. If y is not a vertex of T then it lies on at most d−1

spheres of radius R that determine T . Let their centers be o1, . . . , ok,
k ≤ d − 1. Considering the linear approximation of T and B in some
vicinity of y we see that int X ∩ int B = ∅ implies that

x− y =
k∑

i=1

αi(oi − y) ∀ i = 1, . . . , k αi ≥ 0.

If there is only one index i such that αi 6= 0 then for such i we have
B ⊇ Boi

(R), in this case B contains at least d vertices of T that lie on
bd Boi

(R).
Otherwise, consider the affine subspace

L = {p ∈ Rd : |p− o1| = |p− o2| = . . . = |p− ok|}.
We have dim L ≥ 2, y ∈ L. All intersections L∩Boi

(R) (i = 1, . . . , k)
are the same ball B′ ⊂ L and L ∩B is another ball B′′ ⊂ L.



PIERCING FAMILIES OF CONVEX SETS WITH d-INTERSECTION PROPERTY11

The direction of vector x−y does not coincide with any of oi−y but
lies in their cone hull. All the angles between oi − y and L are equal
to some α, so the angle between x− y and L is less than α, hence the
radius of B′ is less than the radius of B′′.

The intersection int T ∩L in some vicinity of y coincides with L \B′

and B′′ intersects L \ B′ in any vicinity of y, this is a contradiction
with B ∩ int T = ∅.

The case of d = 2 and arbitrary norm with smooth and strictly
convex ball is made in the same manner as above, in this case k = 1 and
we do not have to use equidistant set (which is not an affine subspace in
general). Then we can approximate any norm by a norm with smooth
and strictly convex ball and proceed by going to a limit. �

Lemma 10. R-lower convex set intersects a concave simplex T of cur-
vature radius R iff it contains a vertex of T .

Proof. Trivially deduced from Lemma 9. �

4. Proofs of the theorems

Proof of Theorems 2 and 3. If τ(F) = 1 the statement is true. Other-
wise by Lemma 3 we have S = S(F) and s = s(F). We call elements
of F balls.

Denote the maximal radius of the ball in F by R.
Take the balls K1,K2,. . . ,Kd+1 corresponding to S, they touch the

facets of S in the respective vertices of s. Consider the balls K ′
1,K

′
2,. . . ,K

′
d+1

with radius R touching the respective facets of S in vertices of s.
It can be easily seen that K ′

i ⊇ Ki for all i = 1, . . . , d + 1. Each d
of K ′

i have a common point and they all do not have a common point,
hence they define a concave simplex T of curvature radius R, obviously
T ⊇ S. Let the homothety with scale ratio −1/d that takes S to s take
T to T ′, the latter concave simplex has curvature radius R/d.

By Lemma 4 any K ∈ F intersects s and therefore intersects T ′, its
radius being at least R/d. Hence by Lemma 9 K contains one of d + 1
vertices of T ′. �

Proof of Theorem 4. If F has a common point it is nothing to prove.
Otherwise, consider the ball B(F) of minimal radius r intersecting

every ball in F . This is a well-known consequence of Helly’s theorem
that this ball is the ball of minimal radius intersecting d + 1 balls of
some subfamily F ′ = {B1, B2, . . . , Bd+1} ⊆ F (remember that F has
Πd property) and each intersection B(F) ∩Bi is exactly one point vi.

Let Hi be the outer support halfspace for B(F) in the point vi. Then

S = Rd \
⋃d+1

i=1 int Hi is a simplex with inscribed ball B(F).



12 R.N. KARASEV

Let the ball B ∈ F have minimal radius R. Consider the case d ≥ 5
first. Obviously, B and S satisfy the conditions of Lemma 6 and we
have r ≤ 1/2R.

Note that a ball of radius r can be put into a concave simplex of
curvature radius

R′ =
1

d√
d2−1

− 1
r = (d

√
d2 − 1 + d2 − 1)r ≤ 2d2r ≤ d2R.

Thus the subfamily of balls in F with radii ≥ d2R has a transversal of
cardinality d + 1, which is the set of vertices of this concave simplex.
Other balls in F can be partitioned into two subfamilies with radii
from R to dR and from dR to d2R, by Theorem 3 these subfamilies
have (d + 1)-transversals. In total we obtain a 3(d + 1)-transversal for
F .

In the case d ≤ 4 we note that all balls in F intersect the smallest
ball in F of radius R, the latter can be put into a concave simplex of
curvature radius

(d
√

d2 − 1 + d2 − 1)R ≤ d3R.

The vertices of this concave simplex make a transversal for balls in F
with radii ≥ d3R. Other balls can be partitioned into three families
with (d + 1)-transversals to obtain the transversal for F of size 4(d +
1). �

Proof of Theorem 5. We omit the obvious case τ(F) = 1 and consider
S = S(F) and s = s(F).

Note that any simplex K ∈ F is a negative homothet of S and a
positive homothet of s. This can be deduced from considering the sets
of outer and inner normals to facets of S, K, and s.

Assume that K does not contain any vertex of s.
If K intersects some d facets of s it has to contain their intersection,

which is a vertex of s. Hence there are two facets of s that K does not
intersect. Let these facets correspond to the halfspaces H1 and H2 from
the family {H1, H2, . . . , Hd+1} of outer support halfspaces for facets of
S.

Denote the translate of halfspace Hi containing the respective facet
of s in its boundary by Gi.

K is a homothet of s, intersects s, and does not intersect the facet
bd G1 ∩ s. Hence K ⊆ G1. Similarly K ⊆ G2. We show that the
intersection

G1 ∩G2 ∩H3 ∩ . . . ∩Hd+1
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is either empty or consists of one vertex of s, the latter is possible when
d = 2 only. For all i = 1, . . . , d + 1 Hi ⊆ Gi and therefore

G1 ∩G2 ∩H3 ∩ . . . ∩Hd+1 ⊆ G1 ∩G2 ∩G3 ∩ . . . ∩Gd+1 = s.

The simplex s intersects halfspaces H3, . . . , Hd+1 at one point each,
hence

G1 ∩G2 ∩H3 ∩ . . . ∩Hd+1

can be non-empty when d = 2 only, in this case in consists of one vertex
of s.

Note that K does not contain any vertex of s and

K ∩
d+1⋂
i=3

Ki ⊆ K ∩
d+1⋂
i=3

Hi = ∅,

which is a contradiction with Πd property. �

We need another lemma to prove theorem 6.

Lemma 11. If a halfspace H contains an R-upper convex set K then
there exists a ball B of radius R such that K ⊆ B ⊆ H.

The author cannot give the exact reference to the first proof of this
fact, a proof of this fact can be found in [5].

Proof of Theorem 6. We omit the case τ(F) = 1 and consider S =
S(F) and s = s(F).

Take the sets K1,K2,. . . ,Kd+1 in F that correspond to S and consider
the balls K ′

1,K
′
2,. . . ,K

′
d+1 with the following properties: the radius of

K ′
i is dR, K ′

i ⊇ Ki, and K ′
i ∩ S = Ki ∩ S. Such K ′

i can be found
by Lemma 11 if we consider for each Ki its respective outer support
halfspace Hi for S.

The balls K ′
1,K

′
2,. . . ,K

′
d+1 have Πd property and have no common

point, so they make a concave simplex T of curvature radius dR and
T ⊇ S. Let the homothety that takes S to s take T to T ′, the latter
has curvature radius R.

By Lemma 4 any K ∈ F intersects s and therefore intersects T ′. By
Lemma 10 K contains one of d + 1 vertices of T ′. �
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