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Abstract. In this paper we prove a special case of the transversal conjecture of Tver-
berg and Vrećica. We consider the case when the numbers of parts ri in this conjecture
are powers of the same prime. We also prove some results on common transversals that
generalize the classical nonembeddability theorems.

We also prove an analogue of colored Tverberg’s theorem by Živaljević and Vrećica. In-
stead of multicolor simplices with common point it gives multicolor simplices with common
m-transversal.

1. Tverberg’s transversal conjecture

In this paper we prove a special case of the transversal conjecture of Tverberg and
Vrećica.

Conjecture 1. Let 0 ≤ m ≤ d − 1 and let S0, S1, . . . , Sm be m + 1 finite sets in Rd.
Let |Si| = (ri − 1)(d − m + 1) + 1. Then every set Si can be partitioned into ri parts
Si1, Si2, . . . , Siri

so that all the sets conv Sij can be met by a single m-flat.

This conjecture was formulated by H. Tverberg on the 1989 Symposium on Combina-
torics and Geometry in Stockholm. In print it was first formulated by H. Tverberg and S.
Vrećica in [7], where a special case of this conjecture was proved.

In the papers [11, 12] R. Živaljević and S. Vrećica established the case of this conjecture
when all ri are equal to the same prime p, if p is odd then d and m were also required to
be odd.

Here we prove the theorem that generalizes the results of R. Živaljević and S. Vrećica
to prime powers and show that the condition that d is odd is not necessary. Besides, our
proof is quite short because of using the multiplicative rule for the Euler class.

We prove that this conjecture is true when the numbers ri are powers of the same prime
ri = pki , and for odd p, we also need d−m to be even.

Similarly to what was done by R. Živaljević and S. Vrećica, we prove a more general
topological version of this conjecture.

Theorem 1. Let 0 ≤ m ≤ d−1, let ri (i = 0, . . . ,m) be powers of the same prime ri = pki.
If p is odd, let d−m be even.

Let for each i = 0, . . . ,m fi map continuously an (ri−1)(d−m+1)-dimensional simplex
∆i = ∆(ri−1)(d−m+1) to Rd.
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Then every simplex ∆i has ri points xi1, xi2, . . . , xiri
∈ ∆i with pairwise disjoint supports

so that all the points fi(xij) are contained in a single m-flat.

2. Transversal analogues of nonembeddability theorems

In this paper we generalize some results of [11] that give transversal analogues of nonem-
beddability theorems. We have to remind some basic concepts in equivariant topology, for
detailed explanation see [13], chapters III and IV.

Let us take the classifying G-space EG and define G-equivariant cohomology of a G-space
X as

H∗
G(X, K) = H∗((X × EG)/G, K).

Now consider the case G = Z2. The cohomology ring of the one-point space Λ =
H∗

Z2
(pt, Z2) can be represented as Λ = Z2[u], where dim u = 1. If Z2 acts on Rn by

sending x to −x, then the equivariant Euler class of this representation is

e(Rn) = un ∈ Hn
Z2

(pt, Z2).

For any space Y with Z2 action the equivariant map Y → pt gives the canonical map
Λ → H∗

Z2
(Y, Z2). If this does not lead to a confusion, we denote the images of uk under

this map by uk.

Definition. Let Y be a Z2-space. The maximal n such that un 6= 0 ∈ Hn
Z2

(Y, Z2) (it may
be +∞) is called the homological index of Y . We shall denote it hind Y .

For any topological space we denote X2
∆ = X ×X \∆(X) the deleted product of X, i.e.

the square of X without the diagonal.
For a simplicial complex K it is useful to define the deleted join K∗2

∆ in the following
way. Let the vertex set of K be V . Then the vertex set of K∗2

∆ is V1tV2, the disjoint union
of two copies of V . The simplices of K∗2

∆ are pairs of simplices of K σ1 ⊆ V1, σ2 ⊆ V2 such
that considered as subsets of V they have σ1 ∩ σ2 = ∅.

Deleted squares and joins have natural Z2 action by permutation. As it is discussed
in [15], the simplest way to prove that some topological space X cannot be embedded into
Rn is to show that hind X2

∆ ≥ n. Similarly, for a simplicial complex K it is sufficient to
show that hind K∗2

∆ ≥ n + 1.
Now we can formulate the transversal analogues of nonembeddability theorems.

Theorem 2. Let X0, X1, . . . , Xm be topological spaces such that for any i = 0, . . . ,m
hind(Xi)

2
∆ ≥ d −m. Suppose for each i = 0, . . . ,m we have a continuous map fi : Xi →

Rd. Then there exist m + 1 pairs of distinct points xi, yi ∈ Xi such that their images
{fi(xi), fi(yi)}m

i=0 are met by some m-flat in Rd.

Theorem 3. Let K0, K1, . . . , Km be simplicial complexes such that for any i = 0, . . . ,m
hind(Ki)

∗2
∆ ≥ d − m + 1. Suppose for each i = 0, . . . ,m we have a continuous map fi :

Ki → Rd. Then there exist m + 1 pairs of points xi, yi ∈ Ki with disjoint support simplices
such that their images {fi(xi), fi(yi)}m

i=0 are met by some m-flat in Rd.
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For example, if we consider the d-skeleton of 2d + 2-dimensional simplex K = ∆d
2d+2,

then hind(K∗2
∆ ) = 2d + 1. This is shown in [15] for another definition of index, but in fact

the reasoning is the same for homological index.
Using this fact we can formulate the following corollary that generalizes the Van Kampen-

Flores theorem from [1, 2], which is the case m = 0 of the following statement.

Corollary 4. If we have m + 1 continuous maps fi : ∆d
2d+2 → R2d+m, then there exist

m + 1 pairs of points xi, yi ∈ ∆d
2d+2 with disjoint supports in each pair such that their

images {fi(xi), fi(yi)}m
i=0 are met by some m-flat in R2d+m.

3. Colored version of Tverberg’s transversal conjecture

Denote [n] = {1, 2, . . . , n}

Definition. Let set S be colored into n colors (i.e. mapped to [n]). Call a nonempty subset
σ ⊆ S multicolored if each color occurs in σ no more than once.

Theorem 5. Let 0 ≤ m ≤ d− 1 and let S0, S1, . . . , Sm be m + 1 finite sets in Rd.
Let ri (i = 0, . . . ,m) be powers of the same prime p. Let k be the number of colors and

either k = d −m + 1 or k < d −m + 1 and for each i = 0, . . . ,m ri ≤
d−m

d−m + 1− k
. If

p 6= 2 we require that d−m is even. Let ti = 2ri − 1.
Let |Si| = tik and let each Si be colored in k colors so that each color is used in Si ti

times.
Then we can find ri disjoint multicolored subsets for each i

Pi1, Pi2, . . . , Piri
⊆ Si

so that all the sets conv Pij (i = 0, . . . ,m, j = 1, . . . , ri) can be met by a single m-flat.

We also formulate another version of this theorem

Theorem 6. Theorem 5 is also true when k = d + 1−m and for those of ri that equal 2
we take ti = 2 instead of 3.

Theorems 5 and 6 are straightforward generalizations of colored Tverberg’s theorem
from [6, 8, 10]. They generalize colored Tverberg’s theorem in the same way as results
from [11, 12] and Theorem 1 generalize the non-colored Tverberg’s theorem to m-transversals.

It will be seen from the proof that the sets Si can be replaced by continuous maps of
simplicial complexes Ki (defined below) to Rd and conv Pij can be replaced by the images
of pairwise disjoint simplices of Ki. That means that we prove some stronger topological
versions of Theorems 5 and 6 in fact.

Similar to the colored Tverberg’s conjecture, it is natural to ask whether the number
t = 2r − 1 in Theorem 5 can be made less, or even whether it can be t = r when r 6= 2.
Colored Tverberg’s conjecture for t = r 6= 2 is only proved in [5] for d = 2 by a non-
topological method, so making t less in Theorem 5 seems to be quite a hard problem.
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4. Constructions with vector spaces

We use constructions from the topological proof of Tverberg’s theorem [3] as they are
used in the book [15]. We use them for the case of prime powers, following the ideas from [9].

Consider a vector space V and an integer n > 0. Let us make a definition.

Definition. Take Rn with coordinates (t1, . . . , tn) and consider the hyperplane An given
by the equation

t1 + t2 + · · ·+ tn = 1.

If we want to treat An as a vector space, we put its origin to (1/n, 1/n, . . . , 1/n).

Definition. For a vector space V and an integer n > 0 put

Jn
A(V ) = nV ⊕ An,

here nV is the direct sum of n copies of V . The space V can be embedded into Jn
A(V ) with

the map
v 7→ v ⊕ v ⊕ · · · ⊕ v ⊕ (1/n, . . . , 1/n),

and this gives the orthogonal decomposition

Jn
A(V ) = V ⊕Dn

A(V ).

In fact it can be easily seen that Jn
A(V ) is the affine hull of the n-fold join V ∗V ∗ · · · ∗V .

Action of any group G on the index set [n] gives an action on nV by permutations
of the summands, it also gives an action on An. The summand V in the decomposition
Jn

A(V ) = V ⊕ Dn
A(V ) is stable under this action. If G acts transitively on [n], then its

representation on Dn
A(V ) has no trivial summands.

In the sequel we consider G = (Zp)
k (p is a prime) and choose some bijection between

[n] (n = pk) and G. Thus G acts on [n] by shifts.
In this case the representation Dn

A(V ) has no trivial summands and (see [13], chapter
IV §1 for description of H∗

G(pt, Zp)) its Euler class e(Dn
A(V )) 6= 0 ∈ H∗

G(pt, Zp).

5. Topological constructions

Let r = pk, p be a prime, G = (Zp)
k. Consider the N -fold join EGN = [r] ∗ [r] ∗ · · · ∗ [r].

It is known that it is N − 1-dimensional and N − 2-connected, see the book [15] for very
clear explanation of these matters.

The action of G on [r] induces the free action of G on EGN and the canonical map

H∗
G(pt, Zp) → H∗

G(EGN , Zp)

is injective in dimesions ≤ N − 1, similar to what is done in [9].
In the proof of Theorem 1 it is crucial that the simplicial complex EGN is G-equivariantly

isomorphic to the r-fold deleted join of N − 1-dimensional simplex, i.e.

EGN = (∆N−1)∗r∆ .

The space of deleted join is the subset of ordinary join (∆N−1)∗r consisting of affine com-
binations of r points of ∆N−1

c1x1 ⊕ c2x2 ⊕ · · · ⊕ crxr
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with pairwise disjoint supports.
In the proof of Theorem 5 we have another configuration space. Consider the following

simplicial complex K. Let its vertex set be S = [k]× [t] and let the first factor [k] denote
the color of the vertex. Let simplices of K be all multicolored subsets σ ⊆ S.

Let us describe the r-fold deleted join L = K∗r
∆ . Its vertex set is [r] × S, every simplex

σ ⊆ L can considered as a union

σ = 1× σ1 ∪ 2× σ2 ∪ . . . ∪ r × σr,

where {σ1, . . . , σr} are disjoint simplices of K. In the papers [6, 8] it is shown that the
complex L is rk − 2-connected.

The action of G on [r] induces the free action of G on L and the canonical map

H∗
G(pt, Zp) → H∗

G(L, Zp)

is injective in dimesions ≤ rk−1, this fact can be deduced from the Serre spectral sequence
of the fibration (EG× L) /G → BG, see [13], chapter III §1.

Next we remind Künneth’s formula (see [14]) for cohomology with coefficients in some
field F

Hn(X × Y, F ) =
n⊕

k=0

Hk(X, F )⊗Hn−k(Y, F ),

where the map from Hk(X, F )×Hn−k(Y, F ) to Hn(X × Y, F ) is given by ×-product.
We formulate the following simple statement as a separate lemma, needed in the proofs

below.

Lemma 7. If the space Y is connected then some inclusion i : X = X × {y0} → X × Y
gives the map

i∗ :
n⊕

k=0

Hk(X,F )⊗Hn−k(Y, F ) → Hn(X, F ),

which is the projection onto the n-th summand of
⊕n

k=0 Hk(X, F )⊗Hn−k(Y, F ), having in
mind that H0(Y, F ) = F .

The definition of equivariant cohomology immediately gives for G1-space X and G2-space
Y equivariant Künneth’s formula:

Hn
G1×G2

(X × Y, F ) =
n⊕

k=0

Hk
G1

(X, F )⊗Hn−k
G2

(Y, F ).

If we consider two (equivariant) oriented vector bundles ξ → X and η → Y , then the
space ξ×η is a vector bundle over X×Y and we have the multiplicative rule for the Euler
class

e(ξ × η) = e(ξ)× e(η).

When the bundles are over the same space and we take their fiber-wise direct sum we have
(we use simple multiplicative notation for the cup product)

e(ξ ⊕ η) = e(ξ)e(η).
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6. Lemma about the Grassmann variety

Consider the canonical bundle over the Grassmann variety γ → Gd−m
d . In the case p = 2

we consider the variety of non-oriented d − m-subspaces, and for odd p we consider the
variety of oriented subspaces. If we have to distinguish between these cases we denote the
oriented Grassmann variety by G+d−m

d

Lemma 8. For the Euler class e(γ) modulo p the following holds

e(γ)m 6= 0 ∈ Hm(d−m)(Gd−m
d , Zp),

if p = 2 or d−m is even.

The case of this lemma for p = 2 is proved in [4]. The case for p odd and d odd is proved
in [11].

Proof. Here we give the proof for the case of odd p and the oriented Grassmann variety
G+d−m

d . Denote l = d−m.
We use the method of test sections. That means that to prove that an N -dimensional

oriented vector bundle η over an N -dimensional oriented manifold M has non-zero Euler
class we should make the following. Take some section of this bundle and consider its zero
points. At each zero point consider some its vicinity with properly oriented coordinates
x1, . . . , xN , the bundle here can be considered trivial with properly oriented coordinates
u1, . . . , uN . The section is locally given by

u1 = h1(x1, . . . , xN)

. . .

uN = hN(x1, . . . , xN),

and the index of this zero point is sgn det

(
∂hi

∂xj

)
. If all zero points of the section are

transversal (i.e. their indices are non-zero) the Poincaré duality (see [14]) shows that e(η) =
sw(M), where s is the sum of indices of all zero points and w(M) is the fundamental N -
dimensional class of M .

Now we have ml-dimensional manifold G+l
d and ml-dimensional bundle γ⊕· · ·⊕γ = mγ

(m-fold direct sum of γ).
Take m orthonormal vectors f1, f2, . . . , fm ∈ Rd and consider sections of γ that are

formed by orthogonal projections of fi to the corresponding l-subspace L ∈ G+l
d .

We denote these sections by f1, . . . , fm too. Together they form a section f = (f1, f2, . . . , fm)
of mγ.

As it is easily seen, f has two zero points in G+l
d . They correspond to the l-subspace L

that is orthogonal to vectors fi with two possible orientations.
Choose the orthonormal base e1, . . . , el ∈ L. Consider the case when e1 ∧ . . . ∧ el ∧ f1 ∧

. . . ∧ fm is positive. The elements of G+l
d close to L can be uniquely described by the base
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of form

e′1 = e1 + x11f1 + · · ·+ x1mfm

. . .

e′l = el + xl1f1 + · · ·+ xlmfm,

and the orientation of G+l
d is given by (row-wise product)

ω = dx11 ∧ dx12 ∧ . . . ∧ dx1m ∧ . . . ∧ dxl1 ∧ . . . ∧ dxlm.

The section f of γ locally has the form as a map G+l
d → Rlm (column-wise order)

(x11, x21, . . . , xl1)⊕ · · · ⊕ (x1m, x2m, . . . , xlm).

We see that this is a transversal zero point and its index equals the sign of permutation
that is induced by the change of row-wise to column-wise order, denote it by I = ±1.

Now if we consider the base of L with different orientation, we have the same index for
section f ′ = (f2, f1, . . . , fm). Then transposing f1 and f2 does not change the index, since
l is even. Thus the second point has the same index I.

Finally we have that e(mγ) = e(γ)m = I[G+l
d ] = ±2[G+l

d ], which is not zero modulo odd
primes. �

7. Proof of Theorem 1

Put for all i = 0, . . . ,m Gi = (Zp)
ki , Ni = (ri − 1)(d−m + 1) + 1.

Denote l = d−m. The Grassmann variety will be oriented for odd p.
In this theorem we need ri-tuples of points in each ∆i with pairwise disjoint supports, so

it is natural to consider the ri-fold deleted joins EGNi
= (∆Ni−1)∗ri

∆ as proper configuration
spaces, as it is frequently done in [15].

For any l-dimensional linear subspace V ⊆ Rd consider the deleted join map

hi,V : EGNi
→ Jri

A (V ),

note that the space to the right contains ri-fold join of V .
The maps hi,V are equivariant under the actions of Gi. Take the cartesian product of

these maps to get the G = G0 × · · · ×Gm-equivariant map

h0,V × · · · × hm,V : EGN0 × · · · × EGNm → Jr0
A (V )⊕ · · · ⊕ Jrm

A (V ).

Now considering the dependence of this map on V ∈ Gl
d we get an equivariant section

of the bundle

ξ = Jr0
A (γ)⊕ · · · ⊕ Jrm

A (γ) → EGN0 × · · · × EGNm ×Gl
d.

Now consider the decomposition

ξ = Dr0
A (γ)⊕ · · · ⊕Drm

A (γ)⊕ (m + 1)γ

and with the diagonal embedding γ → (m+1)γ we also have the decomposition (m+1)γ =
γ∆⊕η. From here on we choose some isomorphism between η and mγ, in matrix form it may
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be given by some orthogonal basis in the orthogonal complement of the vector (1, . . . , 1)
in Rm+1.

Thus denote

ζ = Dr0
A (γ)⊕ · · · ⊕Drm

A (γ)⊕ η → EGN0 × · · · × EGNm ×Gl
d.

Note that if the section constructed above in projection to ζ has a zero, then we are
done. Indeed, in this case we have some V and m + 1 points yi ∈ EGNi

. Now remember
that every EGNi

is a deleted join, that means that for all i = 0, . . . ,m yi is an affine
combination

yi = ci1xi1 ⊕ · · · ⊕ ciri
xiri

of points in ∆i with disjoint supports. The condition that the section has zero means that

for all i and j cij =
1

ri

and the projections of fi(xij) to V coincide and give a point v.

Taking the affine m-subspace of Rd orthogonal to V and passing through v we get what
we need.

Finally we have to show that the equivariant Euler class

e(ζ) ∈ H∗
G(EGN0 × · · · × EGNm ×Gl

d, Zp)

is nonzero. Note that by Lemma 8 we have e(η) 6= 0 ∈ H∗(Gl
d, Zp). Also note that any

embedding with fixed V ∈ Gl
d

g : EGN0 × · · · × EGNm → EGN0 × · · · × EGNm ×Gl
d

induces the bundle

β = g∗(Dr0
A (γ)⊕ · · · ⊕Drm

A (γ)) → EGN0 × · · · × EGNm ,

which is the cartesian product of Gi-bundles over EGNi
, arising from representations of

Gi in Dri
A (V ). Since dim Dri

A (V ) = Ni − 1, the construction of EGNi
implies that each of

these bundles has nonzero Euler class in H∗(EGNi
, Zp) and by the multiplicative rule and

Künneth’s formula

e(β) 6= 0 ∈ H∗
G(EGN0 × · · · × EGNm , Zp).

Using Künneth’s formula for (EGN0 × · · · × EGNm) /G×Gl
d and Lemma 7 we see that

e(Dr0
A (γ)⊕ · · · ⊕Drm

A (γ)) = e(β)× 1 +
∑

u× v,

where u ∈ H∗
G(EGN0 × · · · × EGNm , Zp), v ∈ H∗(Gl

d, Zp) and all v have dim v > 0.
Now by the multiplicative rule

e(ζ) = e(Dr0
A (γ)⊕ · · · ⊕Drm

A (γ))e(η) = e(β)× e(η) +
∑

u× ve(η) 6= 0

in the cohomology H∗
G(EGN0 × · · · × EGNm ×Gl

d, Zp).
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8. Proof of Theorems 2 and 3

In the following proofs we also denote l = d−m.

Proof of Theorem 2. Consider some l-subspace V of Rd and denote orthogonal projection
to V by πV . For any i = 0, . . . ,m consider the map si,V : (Xi)

2
∆ → V given by

si,V (x, y) = πV (fi(x))− πV (fi(y)).

This is Z2-equivariant map if Z2 acts on V antipodally. These maps for i = 0, . . . ,m form
a map

sV : (X0)
2
∆ × · · · × (Xm)2

∆ → V ⊕ · · · ⊕ V = (m + 1)V.

Also consider the maps ti,V : (Xi)
2
∆ → V given by

ti,V (x, y) = πV (fi(x)) + πV (fi(y)),

the product of these maps gives a map tV : (X0)
2
∆ × · · · × (Xm)2

∆ → (m + 1)V . The space
(m+1)V can be decomposed into its diagonal and its orthogonal complement (m+1)V =
V∆ ⊕W . So we consider the composition of tV with the projection to W and get the map
uV : (X0)

2
∆ × · · · × (Xm)2

∆ → W .
Then we take the map

sV ⊕ uV : (X0)
2
∆ × · · · × (Xm)2

∆ → (m + 1)V ⊕W,

this map can be considered as a section of the vector bundle ξ ⊕ η = (m + 1)γ ⊕mγ over
(X0)

2
∆ × · · · × (Xm)2

∆ × Gl
d. Here we again choose some isomorphism between the bundle

η arising from spaces W and mγ.
The constructed section is equivariant w.r.t. action of G = (Z2)

m+1 on ξ ⊕ η = (m +
1)γ ⊕mγ by antipodal maps on the former m + 1 summands.

It is easy to see that if this section has a zero, then the projections of corresponding
points {fi(xi), fi(yi)}m

i=0 to V coincide and the theorem is proved.
All we have to do is to prove that the Euler class of this bundle is nonzero modulo 2.

By Lemma 8

e(η) = e(γ)m 6= 0 ∈ Hm(d−m)(Gl
d, Z2).

Taking some fixed V ∈ Gl
d we have a map

(X0)
2
∆ × · · · × (Xm)2

∆ → (X0)
2
∆ × · · · × (Xm)2

∆ ×Gl
d

that induces a bundle ξ′ over (X0)
2
∆ × · · · × (Xm)2

∆. By Künneth’s formula, multiplicative
rule for the Euler class, and the index property of (Xi)

2
∆ we have

e(ξ′) = ul × · · · × ul 6= 0 ∈ H
l(m+1)
G ((X0)

2
∆ × · · · × (Xm)2

∆, Z2).

This means that by Künneth’s formula the Euler class e(ξ) in H∗
G((X0)

2
∆×· · ·×(Xm)2

∆×
Gl

d, Z2) has the form e(ξ) = e(ξ′)× 1 +
∑

a× b (by Lemma 7), where dim b > 1 always.
Then by the multiplicative rule we see that e(ξ⊕η) = e(ξ′)×e(η)+

∑
a×be(η) 6= 0. �
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Proof of Theorem 3. The proof is similar to the previous one, so we only show the differ-
ences.

Instead of maps si,V and ti,V we consider the map ri,V : (Ki)
∗2
∆ → V ⊕ V ⊕ L, where L

is one-dimensional linear space. This map is given by

ri,V (tx⊕ (1− t)y) = tπV (fi(x))⊕ (1− t)πV (fi(y))⊕ (t− 1/2).

This map is obviously equivariant w.r.t. Z2-action on (Ki)
∗2
∆ and its action on V ⊕ V ⊕ L

that permutes two summands V and acts antipodally on L.
The considered space V ⊕ V ⊕ L may be decomposed into Ui ⊕ Wi, where Z2 acts

antipodally on l + 1-dimensional space Ui and trivially on l-dimensional space Wi.
We sum up the maps ri to have the map

rV : (K0)
∗2
∆ × · · · × (Km)∗2∆ → (U0 ⊕ · · · ⊕ Um)⊕ (W0 ⊕ · · · ⊕Wm) = U ⊕W,

Then we decompose W = W ′⊕V∆ by the diagonal map V → W and project rV to U⊕W ′.
This map can be regarded as G = (Z2)

m+1-equivariant section of the bundle ξ ⊕ η, where
ξ arises from U and η arises from W ′.

By Lemma 8 e(η) 6= 0 and the rest of the proof is similar the proof of Theorem 2. �

9. Proof of Theorems 5 and 6

Proof of Theorem 5. We prove this theorem just in the same way as we prove Theorem 1.
Let ri = pki and put for all i = 0, . . . ,m Gi = (Zp)

ki . For each of the set Si we take the
simplicial complex of multicolored subsets Ki (as described above) and its ri-fold deleted
join Li = K∗ri

i∆ with appropriate Gi-action.
Denote l = d−m. The Grassmann variety will be oriented for odd p.
For any l-dimensional linear subspace V ⊆ Rd consider the natural piece-wise linear (or

simply continuous for topological version) projection Ki → V and its ri-fold join

hi,V : Li → Jri
A (V ),

The maps hi,V are equivariant under the actions of Gi. Take the cartesian product of
these maps to get the G = G0 × · · · ×Gm-equivariant map

h0,V × · · · × hm,V : L0 × · · · × Lm → Jr0
A (V )⊕ · · · ⊕ Jrm

A (V ).

Now considering the dependence of this map on V ∈ Gl
d we get an equivariant section

of the bundle

ξ = Jr0
A (γ)⊕ · · · ⊕ Jrm

A (γ) → L0 × · · · × Lm ×Gl
d.

Now consider the decomposition

ξ = Dr0
A (γ)⊕ · · · ⊕Drm

A (γ)⊕ (m + 1)γ

and with the diagonal embedding γ → (m+1)γ we also have the decomposition (m+1)γ =
γ∆ ⊕ η. As in the previous proofs we identify η = mγ.

Thus denote

ζ = Dr0
A (γ)⊕ · · · ⊕Drm

A (γ)⊕ η → L0 × · · · × Lm ×Gl
d.
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If the section constructed above in projection to ζ has a zero, we are done as in the proof
of Theorem 1.

Finally we have to show that the equivariant Euler class

e(ζ) ∈ H∗
G(L0 × · · · × Lm ×Gl

d, Zp)

is nonzero. Note that by Lemma 8 we have e(η) 6= 0 ∈ H∗(Gl
d, Zp), and any embedding

with fixed V ∈ Gl
d

g : L0 × · · · × Lm → L0 × · · · × Lm ×Gl
d

induces the bundle

β = g∗(Dr0
A (γ)⊕ · · · ⊕Drm

A (γ)) → L0 × · · · × Lm,

which is the cartesian product of Gi-bundles over Li, arising from the representation of Gi

in Dri
A (V ). Since dim Dri

A (V ) = (ri−1)(d−m+1), the construction of Li and the conditions
of the theorem imply that

rik − 1 ≥ (ri − 1)(d−m + 1)

and each of summand bundles has nonzero Euler class in H∗(Li, Zp). Thus by Künneth’s
formula and the multiplicative rule for the Euler class

e(β) 6= 0 ∈ H∗
G(L0 × · · · × Lm, Zp).

Using Künneth’s formula for (L0 × · · · × Lm) /G×Gl
d and Lemma 7 we see that

e(Dr0
A (γ)⊕ · · · ⊕Drm

A (γ)) = e(β)× 1 +
∑

u× v,

where u ∈ H∗
G(L0 × · · · × Lm, Zp), v ∈ H∗(Gl

d, Zp) and all v have dim v > 0.
Now by the multiplicative rule for the Euler class

e(ζ) = e(Dr0
A (γ)⊕ · · · ⊕Drm

A (γ))e(η) = e(β)× e(η) +
∑

u× ve(η) 6= 0

in the cohomology H∗
G(L0 × · · · × Lm ×Gl

d, Zp). �

Proof of Theorem 6. Here we give only the differences from the previous proof.
Consider ri = ti = 2. In this case Si has natural Gi-action (Gi = Z2) that exchanges

every two vertices with same color. This gives free Gi-action on Ki itself, so we can consider
Li = Ki. Also note that Ki is the boundary of k-dimensional cross-polytope, so Ki is a
k − 1-dimensional (d−m-dimensional) sphere.

In the case ri = 2 instead of the map

hi,V : Li → J2
A(V )

we consider the map
hi,V : Ki → V ⊕ V

given by x ∈ Ki 7→ π(x) ⊕ π(−x), where by the minus sign we denote the action of Z2.
This is a Z2-equivariant map when Z2 permutes the summands of V ⊕ V .

Instead of projection J2
A(V ) → D2

A(V ) we consider the projection V ⊕ V → V given by
v1⊕ v2 7→ v1− v2. The codomain space V here has antipodal Z2 action and a point x ∈ Ki

maps to zero in V iff the projections of x and −x to V coincide.
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The space V has nonzero equivariant Euler class in Hd−m
Z2

(pt, Z2) and in Hd−m
Z2

(Ki, Z2).
The rest of the above proof works without change. �
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