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1. Introduction

In this course we start with several topological techniques that allow to partition sev-
eral measures in a Euclidean space into equal parts, or partition the space into parts of
prescribed measure. These are classical results in discrete geometry and measure theory,
and they find applications in a variety of problems.

After that, we give applications to point-line incidences and spanning trees with low
crossing number, following the excellent review of H. Kaplan, J. Matoušek, and M. Sharir [KMS12].
The reader is also encouraged to read the review of L. Guth on a similar topic [Guth13].

Then we discuss the monotone transportation and the Brunn–Minkowski inequality,
following the nice course of K. Ball [Ball04]. We also consider the Prékopa–Leindler
inequality for log-concave measures, the Minkowski theorem on facet areas, the needle
decomposition, and the isoperimetric inequality for the Gaussian measure, following, in
particular, the blog post of T. Tao [Tao11] and the nice paper of F. Nazarov, M. Sodin,
and A. Vol’berg [NSV02].

We touch the topic of the isoperimetric inequality and concentration on the round
sphere, as well as another result about the Gaussian measure, known as the Šidák lemma.
Then we give some simple facts about volumes of sections of a cube, facet and vertex
numbers of centrally symmetric polytopes, and sketch a proof of the Dvoretzky theorem,
following another brief course of K. Ball [Ball97]. We also discuss the topological approach
to the Dvoretzky theorem and recent positive and negative results in this direction.

2. The Borsuk–Ulam theorem

One common tool to prove results about partitions of measures is the classical Borsuk–
Ulam theorem [Bor33]:

Theorem 2.1. For any continuous map f : Sn → Rn there exists a pair of antipodal
points x,−x ∈ Sn such that f(x) = f(−x).

Proof. By putting g(x) = f(x)− f(−x), we reduce this theorem to the following: For an
odd map g : Sn → Rn there exists a point x ∈ Sn such that g(x) = 0. A map g is called
odd if g(−x) = −g(x) for any x.

Then we consider a simple map g0 defined as follows: If Sn is the unit sphere in Rn+1,
then g0 is the projection to a coordinate subspace Rn ⊂ Rn+1. It is easy to observe that
for g0 there is a unique antipodal pair x0,−x0 ∈ Sn that is mapped to zero. Moreover, at
this x0 (and −x0) the Jacobian matrix Dg0 is nondegenerate.

Assume that g does not map any point to zero. Now we connect g0 and g by the
homotopy ht(x) = (1−t)g0(x)+tg(x). For any t the map ht(x) remains an odd continuous
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map. From standard facts of differential geometry we may perturb the homotopy ht
slightly to obtain another homotopy h̃t(x) with the following properties:

1) h0(x) is still equal to g0(x); 2) zero is a regular value for h : Sn × I → Rn (I = [0, 1]
is the segment), and h−1(0) is a one-dimensional submanifold Z ⊂ Sn× I with boundary
in Sn × ∂I. 3) the map h1(x) may be not equal to g(x), but it still misses zero in Rn.

Now starting from the unique pair {(x0, 0), (−x0, 0)} ∈ ∂Z and trace this pair along
the one-dimensional set Z. This pair of point must finally arrive at some other pair
{(x1, t1), (−x1, t1)} ⊂ Sn× I, but there is nowhere to arrive: t1 = 1 is impossible because
of the assumption (3), t1 = 0 would mean that the pair (x1,−x1) is the same as (x0,−x0)
but with reversed order. The latter is impossible because if (x0, 0) and (−x0, 0) are
connected by a component of Z then the antipodal action (x, t) 7→ (−x, t) would have a
fixed point in this component, which is wrong.

Thus the assumption was wrong and we conclude that g−1(0) is nonempty.
�

Let us state another similar theorem:

Theorem 2.2. Any odd map g : Sn → Sn has odd degree.

Proof. The proof follows from taking quotient by the antipodal action RP n = Sn/Z2

and considering the induced map g′ : RP n → RP n. One may check that the map
g′∗ : H1(RP n) → H1(RP n) is an isomorphism. Then from the explicit description of the
cohomology H∗(RP n;F2) = F2[w]/(wn+1) it follows that g′ induces an isomorphism in
modulo 2 cohomology and therefore its degree is odd. �

The above theorem has the following corollary due to H. Hopf [Hopf44]:

Theorem 2.3. Let M be a compact n-dimensional Riemannian manifold and δ > 0 is a
positive real number. For any map f : M → Rn there exist two points x, y ∈M connected
by a geodesic of length δ such that f(x) = f(y).

The proof is left to the reader. Hint: Consider the point x ∈ M such that f(x) is
the extremal point of the image f(M). Then for every direction ν ∈ TxM consider the
geodesic `(t, ν) from x in the direction of ν and, assuming the contrary, construct two
homotopic maps from the set of directions (identified with Sn−1) to Sn−1, one of them
being odd and the other being non-surjective (and therefore having zero degree).

For more information about the Borsuk–Ulam theorem the reader is referred to the
book of Matoušek [Mat03].

3. The ham sandwich theorem and its polynomial version

Now we are ready to prove the classical ‘ham sandwich’ theorem [ST42, Ste45]:

Theorem 3.1. Let µ1, . . . , µn be probability measures in Rn that attain zero on every
hyperplane. Then some hyperplane H partitions Rn into a pair of halfspaces H+ and H−

so that µi(H
+) = µi(H

−) = 1/2 for any i.

Proof. We put A = Rn to Rn+1 as the affine hyperplane defined by xn+1 = 1. Then for
any unit vector ν ∈ Sn the inequality (ν, y) ≥ 0 defines a halfspace H+

ν in A with the
complement H−ν . For ν equal to (0, . . . , 0,±1) those halfspaces become degenerate, that
is coinciding with the empty set of with the whole A.

Now we consider the map f : Sn → Rn defined as follows:

f(ν) = (µ1(H+
ν ), . . . , µ1(H+

ν )).
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Be Theorem 2.1 there exist a pair ν,−ν ∈ Sn with µi(H
+
ν ) = µi(H

+
−ν) = µi(H

−
ν ) for any i.

Since the total measure of A is 1 with respect to each µi, we obtain µi(H
+
ν ) = µi(H

−
ν ) =

1/2 for any i. �

Now we are going to consider more general partitions of the space. We start from the
simplest case of the line R and consider the space of univariate polynomials of degree at
most d, which we denote by Pd(R). For every f ∈ Pd(R) it is natural to consider the sets

H+
f = {x : f(x) ≥ 0} and H−f = {x : f(x) ≤ 0}.

We claim that for any d absolute continuous probability measures µ1, . . . , µd in R there
exists a polynomial f ∈ Pd(R) that splits (with R = H+

f ∪ H
−
f ) every measure into two

equal halves. This fact is established by considering the moment map vd1 : R → Rd that
takes t ∈ R to the vector (t, t2, . . . , td). The images of the measures µi are defined and it
is important that they attain zero in every halfspace; this follows from the fact that the
original µi attain zero on every finite set. Now we apply the ham sandwich theorem to
these measures in Rd and obtain an equipartitioning halfspace in Rd with equation

λ(x) ≥ 0,

where λ is a linear function with possible constant term. The function λ(vd1) then becomes
a polynomial of degree at most d in one variable. A nontrivial generalization of this one-
dimensional fact for splitting into a given proportion α : (1−α) is given in [SW85], in this
case the partitioning set has to be twice more complex than in the simple case α = 1/2.

As an exercise the reader may try to prove another result in the line:

Theorem 3.2. Assume f1, . . . , fn are integrable functions on the segment [0, 1]. Then
there exists another function g, orthogonal to every fi, that only takes values ±1 and has
at most n discontinuity points.

The general case of the polynomial ham sandwich theorem follows by considering the

Veronese map vdn : Rn → R(d+n
n ) − 1 that takes an n-tuple (x1, . . . , xn) to the set of

all possible nonconstant monomials in xi’s of degree at most d. After counting such
monomials we obtain:

Theorem 3.3. Let n and d be positive integers and r =
(
d+n
n

)
− 1. Then any r absolutely

continuous measures µ1, . . . , µr in Rn may be partitioned into equal halves simultaneously
by a partition Rn = H+

f ∪H
−
f , where f is a polynomial of degree at most d.

This theorem has a version for partitioning finite point sets, which is frequently needed
in different problems:

Theorem 3.4. Let n and d be positive integers and r =
(
d+n
n

)
− 1. Then for any r finite

sets X1, . . . , Xr in Rn there exists a partition Rn = H+
f ∪H

−
f , where f is a polynomial of

degree at most d, such that |Xi ∩H+
f |, |Xi ∩H−f | ≥ 1/2|Xi| for any i.

Proof. Replace every point x ∈ Xi with a density distributed uniformly over a ball Bε(x)
and sum those densities over all x ∈ Xi to obtain the density of the measure µi.

Then apply Theorem 3.3 to µi and pass to the limit ε→ +0. It is easy to see that all
possible partitioning polynomials fε may be chosen to be contained in a bounded subset
of Pd(Rn) and therefore it is possible to select a limit polynomial f that will satisfy the
requirements. �
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4. Partitioning a single point set with successive polynomials cuts

In the review of Kaplan, Matoušek, and Sharir [KMS12] the importance of the following
corollary of the polynomial ham sandwich theorem is emphasized:

Lemma 4.1. Let X be a finite set in Rn and r be a positive integer. It is possible to
find a polynomial of degree at most Cnr

1/n with the following property: The set Z = {x :
f(x) = 0} partitions Rn into connected components V1, . . . , VN so that |X ∩ Vi| ≤ 1/r|X|
for every i.

Proof. We first use Theorem 3.4 to partition X into almost equal halves using the zero set
Zf1 of a linear function f1. Then we partition every part into equal halves with another
zero set Zf2 of a function f2, which may be still chosen to be linear if n ≥ 2. Then we do
the same j times. After that, we have a collections of polynomials f1, . . . , fj and consider
their product f = f1f2 . . . fj. The zero set Zf partitions Rn into at least r = 2j connected
components, each containing at most 1/r fraction of the set X.

It remains to bound from above the degree of f . On the i-th step we partitioned 2i−1

sets and the required degree of the polynomials was at most (n!2i−1)1/n. The summation
over i of this geometric progression gives the estimate

deg f ≤ (n!r)1/n

1− 2−1/n
= Cnr

1/n.

We proved the result for r powers of two, for other r we could choose 2j to be the least
power of two not less than r. �

Following [KMS12], we make several comments on this lemma. Seemingly we parti-
tioned the space into 2j parts, but some parts could actually split into several connected
component in that process. So we actually do not control the number of parts. The other
issue is that some points of X (and actually many of them) can lie on the set Zf and need
a separate treatment in most applications.

One may consider a simpler approach that gives partition into convex parts with larger
intersection with lines. We may partition a measure into equal halves with a line in
arbitrary direction. Then we can partition both parts simultaneously into equal quarters
by the ham sandwich theorem, on this step the partitioning line is unique. Therefore we
obtain a partition into 4 equal parts such that any line intersects (essentially intersects
in the interior) at most 3 of them. Iterating this procedure hierarchically in k steps we
partition a measure into N = 4k parts, and it is easy to see that any line intersects at most
3k = N log 3/ log 4 of them. This estimate is asymptotically worse than the one obtained
with polynomial cuts, but is has an advantage that the parts are convex.

When trying to generalize the above example to higher dimensions and intersections
with hyperplanes, we see that it is not trivial to find a convex equipartition of a single
measure so that every hyperplane does not intersect at least one of them in the interior.
The corresponding result is known as the Yao–Yao theorem [YY85]:

Theorem 4.2. It is possible to partition an absolutely continuous finite measure in Rn

into 2n equal convex parts so that any hyperplane does not intersect the interior of at least
one of the parts.

Sketch of the proof. We are not going to make the full proof because it is quite technical
and hard to visualize, we only sketch the main ideas instead.

The two-dimensional case is already proved. Then we make induction on the dimension
and try to find a partition which is a twisted (in some sense) partition into coordinate
orthants. We select the basis e1, . . . , en and partition the measure µ into equal halves
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with a hyperplane H perpendicular to e1. Then we consider all possible unit vectors v
such that (v, e1) > 0 and project both halves of the measure onto H along v. For every
one of the halves we obtain an (n− 1)-dimensional Yao–Yao partition, and it is possible
to prove by induction that it is unique once the basis e2, . . . , en in H is selected.

Then a version of the Brouwer fixed point theorem (a similar fact is Lemma 9.2 below)
helps to prove that for some v the centers of the Yao–Yao partitions for the two halves
coincide and give the new center c.

This gives the required partition, because every hyperplane H ′ is either parallel to H,
in this case everything is clear, or intersects H in an affine (n− 2)-subspace. One of the
rays {c+ tv}t>0 and {c− tv}t>0 is not touched by H ′ and we select the corresponding half
H+ or H−, let it be H+ without loss of generality. Applying the inductive assumption to
the projection of µ|H+ along v and the intersection H ∩H ′ we find a part in H+, whose
interior is not intersected by H ′.

To finish the proof one has to prove that the Yao–Yao center c is defined uniquely by
µ and e1, . . . , en. We omit these details. �

Then it is easy to iterate and obtain a partition into N equal convex parts so that any

hyperplane intersects at most N
log(2n−1)

log 2n of them in interiors. The polynomial partition
can give a better result: it is possible to partition a measure into N equal parts so that
any hyperplane intersects at most O(N

n−1
n ) of them, see [KMS12] for the details. But for

the polynomial partition, the parts may be non-convex and even not connected, so convex
partitions are still useful in some cases. The reader is referred to the paper of Bukh and
Hubard [BH11] for an interesting application of the Yao–Yao theorem.

5. The Szemerédi–Trotter theorem

We are going to apply Lemma 4.1 and deduce the Szemerédi–Trotter theorem about
the number of incidences between points and lines. We start from the definition:

Definition 5.1. Let P be a set of points and L be a set of lines in the plane. Denote by
I(P,L) their incidence number, that is the number of pairs (p, `) ∈ P ×L such that p ∈ `.

Theorem 5.2. In the plane I(P,L) ≤ C(|P |2/3|L|2/3 + |P | + |L|) for a suitable absolute
constant C.

Remark 5.3. This theorem is also valid for pseudolines, that is subsets of the place that
behave like lines in terms of their intersection. Such a generalization so far seems to be
out of reach of algebraic methods.

Proof. We start from a much weaker estimate, which we are going to apply to different
sets of points and lines:

Lemma 5.4. I(P,L) ≤ |L|+ |P |2.

This lemma is proved by splitting L into two families: one for the lines intersecting at
most one point of P and all other lines. The details are left to the reader.

Now we put m = |P | and n = |L|. Take some parameter r, whose value we will define
later. We choose an algebraic set Z of degree O(

√
r) (from now on we use the notation

O(·) to avoid different constants) that partitions R2 into connected sets V1, . . . , VN .
Let P0 = P ∩ Z and Pi = P ∩ Vi for any i. Also denote by L0 the lines in L that

lie entirely on Z and denote by Li the lines in L that intersect Vi. Note that Li’s are
not disjoint, and |L0| ≤ degZ = O(

√
r). The crucial fact is that every line from L \ L0

intersects Z in at most O(
√
r) points and intersects at most O(

√
r) of the regions Vi.
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First, we obviously estimate:

I(P0, L0) ≤ m|L0| = O(m
√
r),

∑
i

I(P0, Li) = nO(
√
r), I(Pi, L0) = 0.

Summing up those obvious estimates we obtain O((m+n)
√
r) in total. It remains to use

Lemma 5.4 and bound∑
i

I(Pi, Li) ≤
∑
i

|Li|+ |Pi|2 ≤ nO(
√
r) +m2/r.

Now we make several observations. The projective duality allows us to interchange
points and lines and assume m ≤ n. Then Lemma 5.4 allows us to concentrate on the

case
√
n ≤ m ≤ n. After that putting r = m4/3

n2/3 we make all the estimates made so far to

be of the form O(n2/3m2/3). �

An interesting application of the Szemerédi–Trotter theorem is the sum-product es-
timates. We quote the simplest of them, due to G. Elekes. For a subset A of a ring
put

A+ A = {a1 + a2 : a1, a2 ∈ A}, A · A = {a1a2 : a1, a2 ∈ A}.

Theorem 5.5. For any finite subset A of R we have:

|A+ A| · |A · A| ≥ C|A|5/2

for an absolute constant C.

Proof. Consider the set of points in R2

P = {(b+ c, ac) : a, b, c ∈ A}

and the set of lines

L = {y = a(x− b) : a, b ∈ A}.
Obviously, |L| = |A|2 and every ` ∈ L contains at least |A| points of P with given a and
b and variable c. Hence

|I(P,L)| ≥ |A|3.
Now by the Szemerédi–Trotter theorem

|P | · |L| ≥ C|I(P,L)|3/2,⇒ |P | · |A|2 ≥ C|A|9/2,

and therefore |P | ≥ C|A|5/2. But P ⊆ (A + A) × A · A and we obtain the required
inequality. �

Theorem 5.5 implies that at least one of the cardinalities |A + A| or |A · A| is at least√
C|A|5/4. The exponent 5/4 can be slightly improved through a more careful counting,

see the details in [TaoVu10, Section 8.3]. Actually, P. Erdős and E. Szemerédi conjectured
that it is possible to replace 5/4 with 2− ε with arbitrarily small positive ε, this remains
an open problem.

6. Spanning trees with low crossing number

Sometimes it is important to estimate the number of parts for the partition in Lemma 4.1.
In order to do this we pass to the projective space and prove:

Lemma 6.1. A hypersurface Z ⊂ RP n of degree d partitions RP n into at most dn con-
nected components.
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Proof. Select a hyperplane H ⊂ RP n that intersects Z generically. Without loss of
generality assume H to be the hyperplane at infinity, which is naturally RP n−1.

By the inductive assumption H intersects at most dn−1 components of RP n \Z. Other
components C1, . . . , CN are bounded. When considering the affine space Rn = RP n \H,
we choose a degree d polynomial f with the set of zeros Z. Every bounded component
Ci has the property that on its boundary f vanishes and keeps sign in its interior. Hence
every Ci has a maximum or a minimum of f in its interior. Every critical point is a root
of the system of equations: 

∂f
∂x1

(x) = 0

. . .
∂f
∂xn

(x) = 0

These are algebraic equations of degree at most d−1 each and therefore the system has at
most (d−1)n solutions. Of course, to conclude this we need the solution set to be discrete.
The general case is handled by bounding not the number of solutions, but the number of
connected components of solutions. By an appropriate perturbation of the equations we
may split the components of its solution set into several isolated points each, thus proving
what we need.

Now we have at most (d − 1)n bounded components and at most dn−1 unbounded
components. The total number of components is therefore at most dn. �

For the affine case we note that every infinite component in projective setting may give
two components in affine setting, therefore in Rn \ Z we have at most (d − 1)n + dn−1

components (from the proof above), which is at most dn+1 always. Hence, in Lemma 4.1
the number of components is actually of order r.

For the number of connected components of the set Z itself, there is a more precise
result in the plane. This number is bounded from above by the number

(
degZ−1

2

)
+1 by the

Harnack theorem [Har76]. The reader may try to prove the Harnack theorem considering
the real algebraic curve as a set of cycles on the corresponding complex algebraic curve
of genus g =

(
degZ−1

2

)
.

Now we give another application of Lemma 4.1 is the following theorem of Chazelle
and Welzl [Wel88, Cha89, Wel92]:

Theorem 6.2. Any finite set P ⊂ R2 has a spanning tree T with the following property:
Any line ` (apart from a finite number of exceptions) intersects T in at most C

√
|P |

points.

Proof. The first observation is that it is sufficient to find an arcwise connected subset X
containing P and having small crossings with almost all lines. Then it is easy to select a
tree T inside X that will still connect P and has crossings at most twice of the crossings
of X. Then the edges of T may be replaced with straight line segments without increasing
the number of crossings. The details of this reduction are left to the reader.

Now we prove the following:

Lemma 6.3. It is possible to find a set Y ⊃ P with at most |P |/2 connected components

and line crossing number at most C
√
|P |.

The lemma is proved as follows: Taking r = |P |/C1 we obtain by Lemma 4.1 an

algebraic set Z of degree at most C2

√
|P |/C1 that splits P into parts of size at most

C1. By Lemma 6.1 for sufficiently large C1 (but still an absolute constant) the number of
connected components of R2 \ Z, and therefore Z, will be at most |P |/2. Then in every
component Vi of R2 \ Z we have at most C1 points of P , which we span by a tree Ti and
attach this tree to the set Z. Put Y = Z ∪ T1 ∪ · · · ∪ TN . Any line ` (apart from a finite
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number of exceptions) will intersect Z at most
√
|P | times and will intersect at most√

|P | trees of Ti. Hence this line will have at most (1 + C1)
√
|P | points of intersection

with Y . The lemma is proved.
Now we apply the lemma once, then select a point in every component of Y thus

obtaining the set P2 with |P2| ≤ 1/2|P |. Then apply the lemma again to P2, pass to
another point set P3 with |P3| ≤ 1/2|P2| and so on. As it was in the proof of Lemma 4.1,
in log |P | number of steps we arrive at a connected set X = Y1∪Y2∪ . . . spanning P . The
number of crossings of X with a line ` is bounded from above by the sum of a geometric
progression with denominator 2−1/2 and the leading term (1 +C1)

√
|P |, so it is bounded

by C
√
|P |, where C is another absolute constant.

�

The reader is now referred to the review [KMS12] and a more advanced paper of Soly-
mosi and Tao [ST12] for other interesting applications of Lemma 4.1.

7. Counting point arrangements and polytopes in Rd

Lemma 6.1 of the previous section has interesting applications to estimating the number
of configurations of n points in Rd up to a certain equivalence of relation.

Definition 7.1. Let x1, . . . , xn ∈ Rd be an ordered set of points. We define its order type
to be the assignment of signs

sgn det(xi1 − xi0 , . . . , xid − xi0)
to all (d + 1)-tuples 1 ≤ i0 < · · · < id ≤ n. The configuration x1, . . . , xn is in general
position if all those determinants are nonzero.

Now we can prove:

Theorem 7.2. The number of distinct order types for ordered sets of n points in general
position in Rd is at most nd(d+1)n.

Proof. A configuration in general is characterized by nd coordinates of all its points. Its
order type depends on the signs of some

(
n
d+1

)
polynomials of degree d each, we denote

the product of these polynomials by P (x1, . . . , xn), this polynomial has degree d
(
n
d+1

)
and

nd variables.
It is obvious that distinct order types of sets in general position must correspond to

distinct connected components of the zero set of P . Hence, by Lemma 6.1 and the remark
about its affine case, we have at most(

d

(
n

d+ 1

))nd
+ 1 ≤ nd(d+1)n

dnd2/2

such connected components and order types. �

The above argument comes from the paper [GP86] of Jacob Eli Goodman and Richard
Pollack. After that they easily observe that the number of combinatorially distinct sim-
plicial polytopes on n vertices in dimension d is also at most nd(d+1)n. The generalization
of this result to possibly not simplicial polytopes and some other improvements can be
found in the paper [Alon86] of Noga Alon.

In the case of d = 4 these results bound the number of polytopal triangulations of the
3-sphere on n vertices. Curiously (see [NW13] and the references therein) it is possible to
construct much more triangulations of the 3-sphere of n vertices and conclude that most
of them are not coming from any 4-dimensional polytope.
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8. Chromatic number of graphs from hyperplane transversals

A wide range of applications of the appropriately generalized Borsuk–Ulam theorem
started when László Lovász proved [Lov78] an estimate on the chromatic number of a
certain graph, known as the Kneser conjecture. Let us give some definitions, we denote
the segment of integers {1, . . . , n} by [n]:

Definition 8.1. Let G = (V,E) be a graph with vertices V and edges E. Its chromatic
number χ(G) is the minimum number χ such that there exists a map V → [χ] sending
every edge e ∈ E to two distinct numbers (colors).

Definition 8.2. The Kneser graph K(n, k) has all k-element subsets of [n] as the sets of
vertices V and two vertices X1, X2 ∈ V form an edge if they are disjoint as subsets of [n].

A simple argument, left as an exercise to the reader, shows that it is possible to color
K(n, k) in n − 2k + 2 colors in a regular way. The opposite bound χ(K(n, k)) ≥ n −
2k + 2 was much harder to establish. In order to prove it, we follow the approach of
Dol’nikov [Dol94] and first prove the hyperplane transversal theorem:

Theorem 8.3. Let F1, . . . ,Fn be families of convex compacta in Rn. Assume that ev-
ery two sets C,C ′ from the same family Fi have a common point. Then there exists a
hyperplane H intersecting all the sets of

⋃
iF .

Proof. For every normal direction ν every set C ∈
⋃
iF gives a segment of values of the

product ν · x for x ∈ C. For a given family Fi all these segments intersect pairwise, and
therefore have a common point of intersection. Let this point be di. In other words, all
sets of Fi intersect the hyperplane

Hi(n) = {x : ν · x = di}.
Actually, the values di can be chosen to depend continuously on ν (if we choose the

middle of all candidates, for example) and by definition they are also odd functions of n.
The combinations d2 − d1, . . . , dn − d1 make an odd map Sn−1 → Rn−1, which must take
the zero value according to the Borsuk–Ulam theorem.

Hence, for some direction ν we can put d1 = d2 = · · · = dn and the corresponding
hyperplane will intersect all members of the family

⋃
iF . �

Now we prove:

Theorem 8.4. Let n ≥ 2k. For the Kneser graph we have: χ(K(n, k)) = n− 2k + 2.

Proof. The upper bounds is already mentioned, so we prove the lower bound. Assume
the contrary and consider a coloring of the graph in n− 2k + 1 or less colors.

Put the n vertices of the underlying set (from Definition 8.2) as a general position finite
point set X in Rn−2k+1. For any color i = 1, . . . , n−2k+1, let Fi consist of all convex hulls
of the k-element subsets of X that correspond to the ith color of the coloring of K(n, k).
Since the coloring is proper, any two k-element subsets of X with the same color have a
common point and therefore these families Fi satisfy the assumptions of Theorem 8.3.

Hence there is a hyperplane H touching every convex hull of every k-element subset
of X. But this is impossible: H can contain itself at most n − 2k + 1 points of X from
the general position assumption, of 2k − 1 remaining points some k must lie on one side
of H; and therefore the convex hull of this k-tuple is not intersected by H. This is a
contradiction. �

It is in fact possible to find a much smaller induced subgraph of K(n, k) having the
same chromatic number.
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Definition 8.5. Assume the ground set of n elements is arranged in a circle. Its subset is
called a Schrijver subset if it contains no two consecutive elements in the circular order.
The Schrijver graph S(n, k) is a the subgraph of K(n, k) induced on Schrijver sets.

Theorem 8.6. Let n ≥ 2k. For the Schrijver graph we have: χ(S(n, k)) = n− 2k + 2.

Proof. We still need to use Dolnikov’s hyperplane transversal theorem, but in a more
sophisticated manner.

Let the ground set X = [n] be identified with a subset of the circle S1 = R/2πZ. Let
V be the space of trigonometric polynomials of order ≤ k − 1,

V =

{
a0 +

k−1∑
j=1

(aj cos jx+ bj sin jx)

}
.

We will consider the restriction of functions on the circle S1 to the set X, the set of all
functions f : X → R is then naturally identified with Rn. A nonzero function in V cannot
have more than 2k−2 zeros in the circle and therefore its restriction to X is also nonzero.
Hence we may assume that V ⊂ Rn and dimV = 2k − 1. Let W be the orthogonal
complement of V in Rn, thus dimW = n− 2k + 1.

We have a natural map

I : P → W ∗, p 7→ (f 7→ f(p)).

As in the proof of Theorem 8.4 we assume a coloring of the Schrijver k-tuples in n−2k+1
colors so that every two k-tuples of the same color intersect. The images of the k-tuples
under I have the property that every two k-tuples of the same color intersect and the
number of colors equals the dimension of W ∗. By Theorem 8.3 there exists a hyperplane
in W ∗ that intersects all the convex hulls of images of Schrijver k-tuples. It is given by
the equation f = a, where f ∈ (W ∗)∗ = W .

Without loss of generality assume a ≥ 0. Look at the elements of X whose image
under I lies in the halfspace {f < a}, we want to find a Schrijver k-tuple of such elements
contradicting the fact that {f = a} intersects all the convex hulls of Schrijver k-tuples.
In fact, we will be done if we find a Schrijver k-tuple of the elements of X where f < 0.

Consider the subset N = {p ∈ X : f(p) < 0}. If this subset consists of at least k
segments of consecutive points (in the circular order) then we can take a point from each
segment and they will make a Schrijver k-tuple. Otherwise it is possible to have precisely
k−1 segments [u1, v1], . . . , [uk−1, vk−1] of the circle with endpoints not in X such that the
points of X in these segments are precisely the points of N (some segments may contain
no point from X and are added just to have k − 1 segments in total).

The system of 2k − 2 equations

g(u1) = g(v1) = · · · = g(uk−1) = g(vk−1) = 0

has a nonzero solution in V , since dimV > 2k− 2. Since g cannot have more than 2k− 2
zeros, it only changes sign at the points ui, vi. Hence we may choose g positive outside
the union of the segments [u1, v1], . . . , [uk−1, vk−1] and negative inside the segments. By
the definition of N , the product g(p)f(p) is non-negative on X and is positive on N . In
case N = ∅ the product must also be positive on some point p ∈ X since f represents a
nonzero element of W . In any case,∑

p∈P

g(p)f(p) > 0

that contradicts the orthogonality of g ∈ V and f ∈ W . �

Theorem 8.3 can also be generalized the following way:
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Theorem 8.7. Let F0, . . . ,Fk be families of convex compacta in Rn. Assume that every
n − k + 1 or less number of sets from the same family Fi have a common point. Then
there exists a k-dimensional affine subspace L intersecting all the sets of

⋃
iF .

The proof of this result [Dol94] uses a more advanced topological fact: Any n−k sections
of the canonical k-dimensional bundle over the real Grassmannian Gn,k have a common
zero. We sketch the proof as follows: For a generic set of n− k sections, there is an odd
number of such common zeros. This is established by considering a certain “linear” set of
sections with precisely one nondegenerate common zero, and then showing that the parity
of the number of common zeros does not depend on the choice of the generic set of n− k
sections of the bundle. This is essentially the same argument that shows that the degree
(modulo 2) of a proper map between manifolds of the same dimension is well-defined.

Arguing like in the proof of Theorem 8.4 it is possible to establish some results about
chromatic numbers of certain hypergraphs, see [ABMR11] for example. Though the results
for hypergraphs are not so precise as in the case of graphs.

More systematic topological approach of [Lov78] (see also the book [Mat03]) to the
chromatic number of graphs works as follows. For any two graphs G,H consider the
homomorphisms G → H, that is maps between the vertex sets V (G) and V (H) sending
every edge of G to an edge of H. There is a natural way to consider such homomorphisms
as the vertex set of a simplicial (or cellular) complex Hom(G,H).

Now we check that the definition of the chromatic number of G reads as the smallest
χ such that there exists a homomorphism from G to Kχ, where Kχ is the full graph
of χ vertices. Such a homomorphism induces a morphism of simplicial complexes c :
Hom(I2, G)→ Hom(I2, Kχ), where I2 is the segment graph with two vertices and an edge
between them. Now the crucial facts are:

• We can interchange the vertices of I2 thus obtaining an involution on both the
simplicial complexes Hom(I2, G) and Hom(I2, Kχ).
• The complex Hom(I2, Kχ) has as faces pairs F1, F2 of disjoint subsets of [χ], and

therefore is combinatorially the (χ−1)-dimensional boundary of the crosspolytope
(the higher dimensional octahedron) in Rχ. This is the same as the (χ − 1)-
dimensional sphere with the standard involution.
• In some cases it is possible to map a sphere Sn of dimension larger than χ − 1

to Hom(I2, G), so that this map respects the involution on the sphere Sn and on
Hom(I2, G). In particular, it is possible when the simplicial complex Hom(I2, G)
is (χ− 1)-connected.
• Then the existence of the map c : Hom(I2, G) → Hom(I2, Kχ), commuting with

involution, contradicts the Borsuk–Ulam theorem.

For more information the reader is referred to the book [Mat03].

9. Partition into prescribed parts

Here we stop using the ham sandwich theorem and introduce another technique of
measure partitions that has some useful consequences.

Let us introduce the notion of a generalized Voronoi partition. The standard Voronoi
partition is defined as follows: Start from a finite point set {x1, . . . , xm} ⊂ Rn and put

Ri = {x ∈ Rn : ∀j 6= i |x− xi| ≤ |x− xj|}.

The sets {Ri} give a partition of Rn into convex parts. A generalization of a Voronoi
partition is obtained when we assign weights wi to every point xi and put:

Ri = {x ∈ Rn : ∀j 6= i |x− xi|2 − wi ≤ |x− xj|2 − wj}.
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In this case the inequalities in the definition are actually linear, because the both parts
have the same quadratic in x term |x|2.

Having noticed the linear nature of the generalized Voronoi partition we may redefine
it as follows. Let us work with a finite dimensional linear space V and its dual V ∗. For a
finite set of linear forms λ1, . . . , λm ∈ V ∗ and weights w1, . . . , wm ∈ R put

Ri = {x ∈ Rn : ∀j 6= i λi(x) + wi ≥ λj(x) + wj}.
Definitely, every generalized Voronoi partition has this kind of representation, and the
reader may check that the converse is also true. With such a definition it is clear that the
regions Ri are projections of facets of the convex polyhedron G+ ⊂ V ×R defined by the
system of linear inequalities:

y ≥ λ1(x) + w1

. . .
y ≥ λm(x) + wm.

We are going to establish the following fact:

Theorem 9.1. Let µ be a probability measure on V that attains zero on every hyperplane,
λ1, . . . , λm ∈ V ∗ be a system of linear forms, and α1, . . . , αm be positive integers with unit
sum. Then there exists weights w1, . . . , wm ∈ R such that the generalized Voronoi partition
{Ri} corresponding to {λi} and {wi} has the following property:

µ(Ri) = αi.

Before proving it we exhibit an appropriate topological tool:

Lemma 9.2. Assume that a continuous map f : ∆→ ∆ of the n-dimensional simplex to
itself maps every face of ∆ to itself. Then the map f is surjective.

Proof. We prove a stronger assertion, the map f of the pair (∆, ∂∆) to itself has degree
1, by induction.

Since every facet ∂i∆ (for i = 0, . . . , n) is mapped to itself with degree 1, then the
restriction of f to ∂∆ has degree 1. This means that the map f∗ : Hn−1(∂∆)→ Hn−1(∂∆)
is the identity. From the long exact sequence of reduced homology groups

0 = H̃n(∆) −−−→ Hn(∆, ∂∆)
δ−−−→ H̃n−1(∂∆) −−−→ H̃n−1(∆) = 0

we obtain that f∗ : Hn(∆, ∂∆) → Hn(∆, ∂∆) also must be an isomorphism. The lemma
is proved. �

Proof of Theorem 9.1. Consider the barycentric coordinates t1, . . . , tm in an (m − 1)-
dimensional simplex ∆. Define the map f : ∆→ ∆ as follows: For a point (t1, . . . , tm) con-
sider the set of weights (−1/t1, . . . ,−1/tm) and let f(t1, . . . , tm) be the set (µ(R1), . . . , µ(Rm))
that corresponds to the partition {Ri} with given weights.

It is easy to check that when some ti’s vanish and we substitute wi = −∞ the definition
remains valid and the map f is continuous up to the boundary of ∆. Moreover, when ti
vanishes and wi turns to −∞ the corresponding region Ri becomes empty, and therefore
f maps faces of ∆ to faces. Now we apply Lemma 9.2 and conclude that the point
(α1, . . . , αm) must be in the image of f . �

Lemma 9.2 also allows to prove several classical results. Here is the Brouwer fixed point
theorem:

Theorem 9.3. Every continuous map f from a convex compactum to itself has a fixed
point, that is a point x such that f(x) = x.
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Proof. Topologically every convex compactum is homeomorphic to a simplex ∆ of appro-
priate dimension. So we assume f : ∆→ ∆. We also assume that the center of ∆ is the
origin and its diameter is 1.

If f(x) is never equal to x then from compactness |f(x) − x| ≥ ε for some positive
constant ε. Now we replace f with another map

f̃(x) = (1− ε/2)f(x),

which still has no fixed points and maps ∆ to its interior. Next, we construct the con-
tinuous map g : ∆→ ∆ as follows: take the ray ρ(x) from f̃(x) towards x and mark the

first time it touches the boundary ∂∆, this is the point g(x). The assumptions that f̃ has
no fixed points and maps the simplex to its interior guarantee that g(x) is continuous.
From the construction it is clear that g(x) = x for any x ∈ ∂∆. Therefore Lemma 9.2 is
applicable and g must be surjective. But the construction also implies that its image is
∂∆ and therefore we have a contradiction. �

Another application is the classical Knaster–Kuratowski–Mazurkievicz theorem:

Theorem 9.4. Consider the n-dimensional simplex ∆ with facets ∂0∆, . . . , ∂n∆. Assume
{Xi}ni=0 is a closed covering of ∆ such that any Xi does not intersect its respective ∂i∆.
Then the intersection

⋂n
i=0Xi is not empty.

Hint. Replace the covering with the corresponding continuous partition of unity. �

10. Monotone maps

Theorem 9.1 has the following interpretation. Let µ be a probability measure on V ,
zero on hyperplanes, and ν be a discrete measure on V ∗, assigning to every λi from the
finite set {λi} ⊂ V ∗ the measure αi. Then the convex piecewise linear function

u(x) = sup
1≤i≤m

(λi(x) + wi)

has the following property: The (discontinuous) map f : V → V ∗, defined by f : x 7→ dux,
transports the measure µ to the measure ν.

Using the approximation of arbitrary measures by discrete measures, we may replace ν
with any “reasonably good” measure on V ∗ and obtain the following theorem:

Theorem 10.1. For two absolutely continuous probability measures µ on V and ν on V ∗

there exits a convex function u : V → R such that the map f : x 7→ dux sends µ to ν.

The maps given by x 7→ dux with a convex u are called monotone maps. More pre-
cise claims about the assumptions on µ and ν and continuity of the resulting map f in
Theorem 10.1 can be found in the beautiful review [Ball04]. If the map f is continuously
differentiable, then its differential Df turns out to be a positive semidefinite quadratic
form, and the conclusion that µ is sent to ν just means that ρµ = detDf · ρν for the
corresponding densities of the measures.

From the general properties of convex functions one easily deduces that

(10.1) 〈x− y, f(x)− f(y)〉 ≥ 0

for a monotone map, and the inequality becomes strict if x 6= y, ρµ is everywhere positive
and ρν is defined.

Another description of a monotone map (see [Ball04] for details) for µ and ν is a map
that sends µ to ν and maximizes the following “cost function”:

C(f) =

∫
Rn

〈x, f(x)〉 dµ.
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Also, it is possible to describe the function u and its polar w as the solution to the linear
optimization problem:∫

V

u dµ+

∫
V ∗
w dν → min under constraints ∀x ∈ V, y ∈ V ∗ u(x) + w(y) ≥ 〈x, y〉.

In the paper of M. Gromov [Grom90] we find an example of an explicit construction
of a monotone map. Let a measure µ be supported in a convex compactum K so that
conv suppµ = K ⊂ V and put for any k ∈ V ∗:

u(k) = log

∫
K

e〈k,x〉 dµ(x).

It can be checked by hand that the differential map f(k) = duk : V ∗ → V maps
V ∗ precisely to the relative interior of K and its differential Df is a symmetric positive
semidefinite matrix, which is positive definite if K has nonempty interior. Therefore f is
injective and the volume of K is found as

volK =

∫
V ∗

detDf dk.

This formula may be used as a starting point in studying mixed volumes, see Section 13.
By straightforward differentiation we observe a curious fact: The values f(k) and Df(k)
are the first and the second moment of the measure e〈k,x〉µ after its normalization.

11. The Brunn–Minkowski inequality and isoperimetry

An interesting application of monotone maps (following [Ball04]) is:

Theorem 11.1 (The Brunn–Minkowski inequality). Let A and B be open subsets of Rn

of finite volume each, then

vol(A+B)1/n ≥ volA1/n + volB1/n,

where A+B denotes the Minkowski sum {a+ b : a ∈ A, b ∈ B} of A and B.

Proof. Consider the probability measures µ and ν distributed uniformly on A and B
respectively. Let f be the monotone map between them, this means that detDfx = VB/VA
at any point x ∈ A, where we put VA = volA and VB = volB for brevity.

Note that by (10.1) and the remark after it the map g(x) = x+ f(x) is injective on A
and therefore

vol(A+B) ≥
∫
A

detDg dx =

∫
A

det(id +Df(x)) dx.

Now we are going to use the inequality det(X + Y )1/n ≥ detX1/n + detY 1/n for positive
semidefinite n × n matrices (the Brunn–Minkowski inequality for matrices), its proof is
simply achieved by diagonalization and is left to the reader. We conclude that

det(id +Df(x)) ≥

(
1 +

(
VB
VA

)1/n
)n

and therefore

vol(A+B) ≥

(
1 +

(
VB
VA

)1/n
)n

VA =
(
V

1/n
A + V

1/n
B

)n
,

which is what we need. �
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The most famous consequence of the Brunn–Minkowski theorem is the isoperimetric
inequality. For an open subset A ⊂ Rn we want to define its surface area voln−1(∂A).
Several definitions are possible, but for A with piecewise smooth boundary the following
formula (the Minkowski surface area) works:

voln−1(∂A) = lim
h→+0

vol(A+Bh)− volA

h
,

where Bh is the ball of radius h. Let vn and sn be the volume and the surface area of the
unit ball B1 in Rn.

Theorem 11.2. For reasonable A we have

voln−1(∂A)

sn
≥
(

volA

vn

)n−1
n

.

Proof. From the Brunn–Minkowski inequality we obtain:

vol(A+Bh) ≥ (volA1/n + v1/n
n h)n

and therefore
voln−1(∂A) ≥ n(volA)

n−1
n v1/n

n .

Differentiating the equality volBh = vnh
n we obtain sn = nvn and therefore

voln−1(∂A) ≥ sn
vn

(volA)
n−1
n v1/n

n ,

which is equivalent to the required inequality. �

Remark 11.3. A more careful argument can show that the equality is attained only if A
is a ball.

For another approach to the Brunn–Minkowski inequality the reader is referred to the
paper of M. Gromov [Grom90] and the post of T. Tao [Tao11]. That approach uses upper
triangular Jacobi matrices in place of positive semidefinite matrices and turns out to be
useful in several generalizations of the Brunn–Minkowski inequality.

Let us mention other consequences of the Brunn–Minkowski inequality:

Corollary 11.4. Let A and B be centrally symmetric convex bodies in Rn. Then the
volume vol(A+ x) ∩B is maximal if x = 0.

Proof. Observe that

A ∩B ⊇ 1

2
((A+ x) ∩B + (A− x) ∩B),

then apply the Brunn–Minkowsky inequality. �

Theorem 11.5 (The Rogers–Shepard inequality). For any convex A

vol(A− A) ≤
(

2n

n

)
volA.

Proof. Definitely, A−A = {a1 − a2 : a1, a2 ∈ A} is a projection of A×A ⊆ R2n onto the
Rn, under the map π : (a, b) 7→ a − b. The fibers of this projection over x ∈ Rn are the
sets (a1, a2) ∈ A× A such that a1 − a2 = x, that is a1 = a2 + x. Hence up to translation
the fiber over x is A ∩ (A+ x).

When A ∩ (A+ x1) and A ∩ (A+ x2) are both nonempty then

A ∩
(
A+

1

2
(x1 + x2)

)
⊇ 1

2
(A ∩ (A+ x1) + A ∩ (A+ x2)) .
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Hence vol(A ∩ (A+ x))1/n is a concave function on A−A. If we introduce the norm ‖x‖
with the unit ball A− A, then from concavity

vol(A ∩ (A+ x)) ≥ (1− ‖x‖)n volA.

Now integrate this over x to obtain:

vol2nA× A = (volA)2 =

∫
A−A

vol(A ∩ (A+ x)) dx ≥

≥ volA ·
∫
A−A

(1− ‖x‖)n dx = volA ·
∫
A−A

∫ (1−‖x‖)n

0

1 dy dx =

= volA ·
∫ 1

0

∫
‖x‖≤1−y1/n

1 dx dy = volA ·
∫ 1

0

(1− y1/n)n vol(A− A) dy =

= volA · vol(A− A) ·
∫ 1

0

(1− y1/n)n dy.

Let us calculate the last integral by substitution y = tn and using the beta-function:∫ 1

0

(1− y1/n)n dy =

∫ 1

0

(1− t)nntn−1 dt = nB(n+ 1, n) =
nΓ(n+ 1)Γ(n)

Γ(2n+ 1)
=

=
nn!(n− 1)!

(2n)!
=

(
2n

n

)−1

.

Substituting this into the previous inequality we complete the proof. �

12. Log-concavity

Let us discuss logarithmically concave measures (abbreviated “log-concave”) and their
properties, see also [Ball04, Tao11]. A log-concave measure on Rn is a measure having
density ρ such that log ρ(x) is a concave function, though there are more general definitions
for measures having no density. Following the usual convention, we allow values −∞ for
concave functions, corresponding to 0 for log-concave functions.

The log-concavity is expressed by the inequality:

(12.1) ρ((1− t)x1 + tx2) ≥ ρ(x1)1−tρ(x2)t.

Moreover, for continuous density ρ it is sufficient to check the case t = 1/2, that is

ρ

(
x1 + x2

2

)
≥
√
ρ(x1)ρ(x2).

The main result about log-concave measures is the Prékopa–Leindler inequality:

Theorem 12.1. If a measure µ is log-concave and π : Rm → Rn is a linear surjection
then π∗µ is log-concave.

After the trivial observation that a Cartesian product of log-concave measures is log-
concave we immediately obtain:

Corollary 12.2. The convolution of two log-concave measures is log-concave.

Proof of Theorem 12.1. It sufficient to consider the case, when π drops the dimension by
1 and use induction. Moreover, since the concavity property is essentially one-dimensional
it suffices to consider the case of n = 1 and π : (x, y) 7→ x, where y ∈ R.
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Now we have to prove that∫
R
ρ((1− t)x1 + tx2, y) dy ≥

(∫
R
ρ(x1, y) dy

)1−t

·
(∫

R
ρ(x2, y) dy

)t
under the assumption

ρ((1− t)x1 + tx2, (1− t)y1 + ty2) ≥ ρ(x1, y1)1−tρ(x2, y2)t.

Put for brevity

f(y) = ρ(x1, y), g(y) = ρ(x2, y), h(y) = ρ((1− t)x1 + tx2, y),

and also

F =

∫
R
f(y) dy, G =

∫
R
g(y) dy, H =

∫
R
h(y) dy.

Consider the monotone map ϕ : R → R such that is transports f(y)/Fdy to g(y)/Gdy,
that is for all y

1

F

∫ y

−∞
f(y) dy =

1

G

∫ ϕ(y)

−∞
g(y) dy.

It follows that ϕ′(y) = f(y)G
g(ϕ(y))F

. As y runs from −∞ to +∞ the value ϕ(y) does the same,

therefore ψ(y) = (1− t)y + tϕ(y) also runs monotonically from −∞ to +∞. So we write

H =

∫
R
h(ψ(y)) dψ(y) =

∫
R
h(ψ(y))

(
1− t+

tf(y)G

g(ϕ(y))F

)
dy.

Using the assumption h(ψ(y)) ≥ f(y)1−tg(ϕ(y))t we obtain:

H ≥ F 1−tGt

∫
R

(
f(y)G

Fg(ϕ(y))

)1−t(
(1− t)g(ϕ(y))

G
+ t

f(y)

F

)
dy

and using the mean inequality
(

(1− t)g(ϕ(y))
G

+ tf(y)
F

)
≥
(
f(y)
F

)t
·
(
g(ϕ(y))
G

)1−t
we conclude

H ≥ F 1−tGt

∫
R

f(y)

F
dy = F 1−tGt.

�

Now we make several observations. Every measure with constant density inside a convex
body and zero density outside is log-concave by definition. So any its projection is also
log-concave.

Then we start from two convex bodies A ⊂ Rn, B ⊂ Rn and put the into Rn+1 as
A′ = A× {0} and B′ = B × {1}. Note that the convex hull convA′ ∪B′ contains the set
((1 − t)A + tB) × {t}. Therefore by projection to the last coordinate and log-concavity
we obtain:

vol((1− t)A+ tB) ≥ volA1−t volBt,

this inequality is the dimension-independent version of the Brunn–Minkowski inequality.
Indeed, it actually implies the standard Brunn–Minkowski inequality as follows: Replacing
A and B with their homothetic copies 1

1−tA and 1
t
B and using the homogeneity of the

volume we rewrite:

vol(A+B) ≥ 1

(1− t)(1−t)nttn
volA1−t volBt.

The reader is invited to check that after finding the maximum of the right hand side in t
we arrive again at the Brunn–Minkowski inequality.
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If fact, the inequality

(12.2) µ((1− t)A+ tB) ≥ µA1−tµBt

holds for arbitrary log-concave measure µ and convex bodies A and B, with almost the
same proof as for vol = µ. This inequality (12.2) is sometimes considered as the definition
of log-concavity, which is also applicable to measures with no density. The reader may
check that for a measure with density the two definitions are equivalent.

Actually, the case of possibly non-convexA andB in the dimension-independent Brunn–
Minkowski inequality is also valid, and is contained in the following version of the Prékopa–
Leindler inequality (see also [Tao11] for generalizations to nilpotent Lie groups), also
known as the functional Brunn–Minkowski inequality:

Theorem 12.3. Assume f, g, h are nonnegative densities in Rn such that for some t ∈
[0, 1] and x, y ∈ Rn

h((1− t)x+ ty) ≥ f(x)1−tg(y)t.

Then ∫
Rn

h(x) ≥
(∫

Rn

f(x) dx

)1−t

·
(∫

Rn

g(y) dy

)t
.

Sketch of the proof. One way of proving this theorem is to show that the property h((1−
t)x+ ty) ≥ f(x)1−tg(y)t is preserved under projections dropping dimension by 1, like we
did in the proof of Theorem 12.1.

Another approach is to consider a monotone map ϕ, sending the measure f(x)dx to
g(x)dx, and then consider the monotone map ψ : x 7→ (1−t)x+tϕ(x) and write inequalities
for h((1− t)x+ tϕ(x)), similarly to the proof of Theorem 12.1. �

Another result that benefits from log-concavity is the Minkowski theorem on facet areas.
We split it into the simple direct theorem and the harder converse theorem:

Theorem 12.4. If P ⊂ Rn is a polytope, ν1, . . . , νm are its facet normals, and A1, . . . , Am
are its respective facet surface areas, then

(12.3) A1ν1 + A2ν2 + · · ·+ Amνm = 0.

Proof. Consider a constant vector field v, it has zero divergence and by the Gauss theorem
its flux through ∂P is zero. That is,

A1(ν1, v) + A2(ν2, v) + · · ·+ Am(νm, v) = 0.

Since v is arbitrary, the result follows. �

Theorem 12.5. For any prescribed set of normals ν1, . . . , νm spanning Rn and positive
facet surface areas A1, . . . , Am satisfying (12.3), there exists a unique (up to translations)
polytope P corresponding to these data.

Sketch of the proof. Introduce real variables t1, . . . , tm and consider the polytope

(12.4) P (t) = {x ∈ Rn : ∀i = 1, . . . ,m (x, νi) ≤ ti}.
Since a positive combination of νi’s equals zero, then P (t) is always bounded. The equa-
tion (12.4) may treat xj’s and ti’s as variables and define an (n + m)-dimensional poly-

hedron P̃ , this way P (t) is a parameterized n-dimensional section of P̃ .
By the Prékopa–Leindler inequality the function f(t) = volP (t) is log-concave in t. The

standard geometric differentiation reasoning shows that its logarithmic derivative equals

d log f(t) =
1

f(t)
(A1(t)dt1 + · · ·+ Am(t)dtm) ,
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where Ai(t) is the surface area of the corresponding facet. The map ϕ(t) = d log f(t) is
therefore “minus” monotone and its image must be convex.

Definitely, the image of ϕ(t) satisfies (12.3) (divided by f(t) = volP ). We have to check
that for every positive vector y satisfying

(12.5) y1ν1 + y2ν2 + · · ·+ ynνn = 0

there exists a proportional vector in the image of ϕ. Denote the set of nonnegative y
satisfying (12.5) by Q. The polyhedron Q is a cone centered in 0 and from convexity
of the image of ϕ and the linear programming considerations to prove what we need it
is sufficient to check that every extremal ray of Q intersects the image of ϕ. But such
an extremal ray corresponds to a vector y with at most n + 1 positive coordinates, put
I = {i : yi > 0}.

It may happen that I contains less than n indexes. We avoid such degenerate cases by
perturbing slightly the set of normals ν1, . . . , νm, the general case then can be deduced by
going to the limit. So it is sufficient to consider the case |I| = n + 1. It is easy to check
that such vectors y correspond to simplices {x : ∀i ∈ I (x, νi) ≤ ti} that are obviously
contained in the image of ϕ. Hence all nonnegative vectors y satisfying (12.5) are in the
image of ϕ up to scaling.

The uniqueness of P follows from the fact that the image of ϕ is essentially (m − n)-
dimensional and ϕ is monotone, hence the preimage ϕ−1(y) is n dimensional and consists
of a set of polytopes taken to each other by translations. �

In this section we presented the analytical approach to log-concavity, and the reader
is invited to read the review of R.P. Stanley [Stan89] about algebraic point of view on
log-concavity. One simple fact, left as an exercise for the reader, is: If a univariate monic
polynomial P (x) has all roots real and negative, then its coefficients from a log-concave
sequence.

In a wonderful way, the algebraic approach returns with a proof of the Alexandrov–
Fenchel inequality for mixed volumes of convex bodies, which, in turn, gives another proof
of the Brunn–Minkowski inequality. A typical example of an algebraic log-concavity result
is:

Theorem 12.6. Let X be an n-dimensional normal projective algebraic variety and L and
M be ample divisor classes on X. Then the sequence v0, . . . , vn of intersection numbers

vk = #(L, . . . , L︸ ︷︷ ︸
k

,M, . . . ,M︸ ︷︷ ︸
n−k

)

is log-concave.

Sketch of the proof. For corresponding facts from algebraic geometry please consult the
textbook [GH78].

We have to prove the inequality:

(12.6) #(L, . . . , L︸ ︷︷ ︸
k

,M, . . . ,M︸ ︷︷ ︸
n−k

)2 ≥ #(L, . . . , L︸ ︷︷ ︸
k−1

,M, . . . ,M︸ ︷︷ ︸
n−k+1

) ·#(L, . . . , L︸ ︷︷ ︸
k+1

,M, . . . ,M︸ ︷︷ ︸
n−k−1

).

After multiplying L and M by some positive integers we assume that L and M correspond
to projective embeddings of X. By an appropriate version of the Bertini theorem we
choose the hyperplane sections (in L) for the first k − 1 of L in the intersection formula
and the hyperplane sections (in M) for the last n − k − 1 of M , so that X reduces to a
normal surface S and over this surface we have to prove:

#(L,M)2 ≥ #(L,L) ·#(M,M).
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By the Hodge theorem, the intersection form of an algebraic surface has positive index 1,
then this inequality is just the inverse Cauchy–Schwarz inequality. �

The general form of (12.6) is

(12.7) #(L1, L2, L3, . . . , Ln)2 ≥ #(L1, L1, L3, . . . , Ln) ·#(L2, L2, L3, . . . , Ln),

which is the algebraic form of the Alexandrov–Fenchel inequality.

13. Mixed volumes

Let us make a brief discussion of mixed volumes, following [Grom90]. The crucial fact
is:

Theorem 13.1. Let K1, . . . , Kn be convex bodies in Rn, the expression

vol(t1K1 + · · ·+ tnKn)

for nonnegative ti is a polynomial in ti’s of degree n and the coefficient at t1 . . . tn, divided
by n!, is called the mixed volume of K1, . . . , Kn, and is denoted by MV(K1, . . . , Kn).

Proof. Consider the monotone maps fi from Rn to the respective Ki with potentials

ui(k) = log

∫
K

e〈k,x〉 dµi(x),

where µi are some measures with convex hulls of support equal to the respective Ki. The
map

f(k) = t1f1(k) + . . . tnfn(k)

is also monotone, with potential u(k) = t1u1(k) + · · ·+ tnun(k). It is a simple fact about
convex functions that for continuously differentiable u(k) that image of the differential

map du(k) = f(k) is convex. Therefore the image K̃ of f(k) is convex, obviously K̃ ⊆
K = t1K1 + · · ·+ tnKn.

We claim that (the open convex set) K̃ actually equals K up to boundary. To prove
this, it is sufficient to compare their support functions:

h(p,K) = sup
x∈K
〈p, x〉, h(p, K̃) = sup

x∈K̃
〈p, x〉.

Take k = αp, it is easy to see that for α → +∞ the measure e〈k,x〉µi(x) on Ki gets
concentrated near the points of Ki, where the linear form 〈p, x〉 attains its maximum.
Hence 〈p, fi(αp)〉 → h(p,Ki) for α → +∞. Since the support functions are obviously
additive with respect to the Minkowski sum, we obtain

〈p, f(αp)〉 → h(p,K),

when α → +∞. Since h(p, K̃) ≥ 〈p, f(αp)〉 by definition, there must be an equality

h(p, K̃) = h(p,K).

Now we can calculate vol K̃ = volK:

(13.1) vol(t1K1 + · · ·+ tnKn) =

∫
Rn

det(t1Df1(k) + · · ·+ tnDfn(k)) dk.

Obviously, the determinant under the integral is a polynomial of degree n, and the result
follows. �

Actually, the mixed volume MV(K1, . . . , Kn) is positive, the reader may deduce it from
(13.1) noting that Dfi’s are positive definite. In fact, a stronger fact, the Alexandrov–
Fenchel inequality, holds:



GEOMETRY OF MEASURES: PARTITIONS AND CONVEX BODIES 21

Theorem 13.2. For any convex bodies K1, . . . , Kn ⊂ Rn we have

MV(K1, K2, . . . , Kn)2 ≥ MV(K1, K1, K3, . . . , Kn) ·MV(K2, K2, K3, . . . , Kn).

It seems that there is no easy way to prove this inequality. One way is to relate the
mixed volumes to intersection numbers of ample divisors over a toric variety, and then
prove (12.7) arguing similarly to the proof of Theorem 12.6, see [Ful93]. The other way
is to prove an analogue of this inequality for positive definite matrices and their mixed
discriminants, and then use (13.1) along with other nontrivial observations, see [Grom90].

It makes sense to mention the Bernstein theorem [Bern76], connecting the mixed vol-
umes and intersection numbers of divisors. First, for every Laurent polynomial in n
variables

P (x̄) =
∑
k̄

ck̄x̄
k̄,

where we use the notation x̄k̄ = xk11 . . . xknn , we define the Newton polytope:

N(P ) = conv{k̄ ∈ Zn : ck̄ 6= 0}.
Now the theorem reads:

Theorem 13.3. The system of equations:

P1(x̄) = 0

P2(x̄) = 0

. . .

Pn(x̄) = 0,

for x̄ ∈ (C∗)n, has either an infinite number of solutions, or a finite number of solutions
not exceeding n! MV(N(P1), . . . , N(Pn)). For a generic choice of the coefficients ck̄ of the
polynomials keeping the Newton polytopes the same, the number of solutions is precisely
n! MV(N(P1), . . . , N(Pn)).

In [Bern76], besides this fact, a certain sufficient condition, in terms of faces of the
Newton polytopes, was given that guarantees that the set of solution consists of precisely
n! MV(N(P1), . . . , N(Pn)) points, without using the term generic.

We do not give a proof of this theorem here. An elementary, but technical, reasoning
can be found in the original paper [Bern76]. A more conceptual approach using symplec-
tic/Kähler geometry can be found in [Ati83].

14. The Blaschke–Santaló inequality

We give an application of the Prékopa–Leindler inequality (in form of Theorem 12.3)
to the Blaschke–Santaló inequality. Following the paper of Lehec [Leh09A], we start from
proving the functional version of this inequality:

Theorem 14.1. Assume f and g are nonnegative measure densities such that

f(x)g(y) ≤ e−(x,y)

for any x, y ∈ Rn. Also assume that
∫
Rn yg(y) dy = 0 and

∫
Rn xf(x) dx converges. Then∫

Rn

f(x) dx ·
∫
Rn

g(y) dy ≤ (2π)n.

We are going to make the proof in several steps. First, we observe that it is sufficient
to prove the following:
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Lemma 14.2. For any nonnegative measure density f(x) with converging
∫
Rn xf(x) dx

there exists z ∈ Rn such that for any other nonegative density g(x) with converging∫
Rn xg(x) dx the inequality

f(x+ z)g(y) ≤ e−(x,y)

for any x, y ∈ Rn implies ∫
Rn

f(x) dx ·
∫
Rn

g(y) dy ≤ (2π)n.

Informally, the lemma replaces the mass centering condition by an arbitrary centering
condition for one of the functions, independent of the other function.

Proof of Theorem 14.1 assuming Lemma 14.2. Suppose we have an appropriate z from
Lemma 14.2. From the assumption of Theorem 14.1 it follows that:

f(z + x)g(y)e(z,y) ≤ e−(z,y)−(x,y)+(y,z) = e−(x,y).

Hence ∫
Rn

f(x) dx ·
∫
Rn

g(y)e(z,y) dy ≤ (2π)n.

Let us estimate e(y,z) ≥ 1 + (y, z) and integrate this inequality after multiplying by g(y):∫
Rn

g(y) + (y, z)g(y) dy ≤
∫
Rn

g(y)e(z,y) dy.

Taking into account that
∫
Rn yg(y) dy = 0 we obtain∫

Rn

g(y) dy ≤
∫
Rn

g(y)e(z,y) dy,

which implies the required inequality. �

In order to prove Lemma 14.2 we start with proving the corresponding one-dimensional
fact:

Lemma 14.3. Let f(x) and g(y) be nonnegative densities on the half-line R+. If f(x)g(y) ≤
e−xy for any x, y ∈ R+ then∫ +∞

0

f(x) dx ·
∫ +∞

0

g(y) dy ≤ π

2
.

Proof. Put u(s) = f(es)es, v(t) = g(et)et, and w(r) = e−e
2r/2er. From the assumptions it

follows that for any s, t ∈ R

w

(
s+ t

2

)
= e−e

s+t/2e(s+t)/2 ≥
√
f(es)g(et)e(s+t)/2 =

√
u(s)v(t).

Now the one-dimensional case of Theorem 12.3 implies:∫ +∞

0

f(x) dx ·
∫ +∞

0

g(y) dy =

∫ +∞

−∞
u(s) ds ·

∫ +∞

−∞
v(t) dt ≤

≤
(∫ +∞

−∞
w(r) dr

)2

=

(∫ +∞

0

e−z
2/2 dz

)2

=
π

2
.

�
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Proof of Lemma 14.2. The proof is by induction. Assume the normalization
∫
Rn f(x) dx =

1, which can be achieved by multiplying f(x) by a constant and dividing g(y) by the same
constant.

The one-dimensional case follows from Lemma 14.3 as follows: choose z to be the
median of f . After a shift of z to 0 we have to prove that the inequality

f(x)g(y) ≤ e−xy

implies ∫ +∞

−∞
g(y) dy ≤ 2π.

But Lemma 14.3 is applicable to f(x) and g(y) in the range x, y > 0 and to f(−x) and
g(−y) in the same range. Summing up the results and noting that∫ 0

−∞
f(x) dx =

∫ +∞

0

f(x) dx = 1/2

we obtain the required inequality.
Now we use induction as follows. Let µ be the measure with density f(x). We can

partition µ into equal halves H+ and H− with a hyperplane H orthogonal to the last
basis vector en. Since we may translate f , without loss of generality we assume that H+

and H− are defined by xn ≥ 0 and xn ≤ 0 respectively.
Let c+ and c− be mass centers of µ|H+ and µ|H− . After another translation of f we

also assume that the segment [c−, c+] intersects H at the origin. Now let v be the vector
parallel to [c−, c+] and normalized so that (v, en) = 1. Then we consider the linear
operators A and B defined by:

Ae1 = e1, . . . , Aen−1 = en−1, Aen = v, B = (A−1)T ,

so that (Ax,By) = (x, y) for any x, y ∈ Rn. Note that the determinants of these maps
equal 1 and A maps H to itself, while B may not map H to itself. Consider the functions
of x′, y′ ∈ H:

F (x′) =

∫ +∞

0

f(x′ + sv) ds, G(y′) =

∫ +∞

0

g(Bx′ + ten) dt.

From the normalization,
∫
H
F (x′) dx = 1/2. Also, the mass center of F (x′) is zero by the

selection of vector v. The assumption can be rewritten:

f(x′ + sv)g(By′ + ten) ≤ e−(x′+sv,By′+ten) = e−(Ax′+sAen,By′+ten) =

= e−(x′,y′)−(x′,ten)−(sAen,By′)−st(v,en) = e−(x′,y′)−st.

We now fix x′ and y′ and consider f(x′+sv) and g(By′+ten)e(x′,y′) as functions of positive
variables s and t. By Lemma 14.3 we obtain:

F (x′)G(y′) ≤ π

2
e−(x′,y′).

Now we invoke the inductive assumptions interchanging F (x′) and G(y′), taking into
account Lemma 14.2, the fact

∫
H
x′F (x′) dx′ = 0 implies that∫

H

F (x′) dx′ ·
∫
H

G(y′) dy′ ≤ π

2
(2π)n−1.

Since
∫
H
F (x′) dx = 1/2 we obtain∫

BH+

g(y) dy =

∫
H

G(y′) dy′ ≤ π(2π)n−1.
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Similarly, inverting en and v, we obtain∫
BH−

g(y) dy ≤ π(2π)n−1

and it remains to sum these inequalities to obtain∫
Rn

g(y) dy ≤ (2π)n.

�

Remark 14.4. A finer argument shows that it is possible to satisfy the assumption [c−, c+] ‖
en, after a careful choice of the coordinate system. In this case v = en, the operators A, B
equal the identity operator, and the formulas get considerably simpler. This assumption
is satisfied if we choose the hyperplane H = {xn = 0} so that to minimize the integral∫

Rn

dist(x,H)f(x) dx.

By varying the normal of H and its constant term we obtain that∫
H+

xf(x) dx−
∫
H−

xf(x) dx ⊥ H, and

∫
H+

f(x) dx−
∫
H−

f(x) dx = 0,

which is exactly what we need.

Another approach (see [Leh09B]) to Lemma 14.2 invokes the Yao–Yao theorem (The-
orem 4.2) to partition Rn into 2n convex cones A1, . . . , A2n with center at z so that∫
Ai
f(x) dx = 2−n for every i. After translating z to the origin one observes that the

characterizing property of the Yao–Yao partition means that the space Rn is covered by
the family {A◦i }2n

i=1 of polar cones.
Then one invokes the logarithmic form of the Prékopa–Leindler inequality:

Lemma 14.5. Let f, g, h be nonnegative absolute integrable function on the positive cone
Rn

+. Assume that

h(
√
x1y1, . . . ,

√
xnyn) ≥

√
f(x)g(y)

for any x, y ∈ Rn
+. Then∫

Rn
+

f(x) dx ·
∫
Rn
+

g(y) dy ≤

(∫
Rn
+

h(z) dz

)2

.

Proof. Substitute

f̄(s1, . . . , sn) = f(es1 , . . . , esn)es1+···+sn ,

ḡ(t1, . . . , tn) = g(et1 , . . . , etn)et1+···+tn ,

h̄(r1, . . . , rn) = h(er1 , . . . , ern)er1+···+rn .

It is easy to check that for any s, t ∈ Rn(
h̄

(
s+ t

2

))2

≥ f̄(s)ḡ(t).

Then Theorem 12.3 implies that∫
Rn

f̄(s) ds ·
∫
Rn

ḡ(t) dt ≤
(∫

Rn

h̄(r) dr

)2

,

that is equivalent to what we need. �
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Now Lemma 14.5 applied to h(z) = e−|z|
2/2 gives for any Yao–Yao cone Ai the inequality:∫

−A◦i
g(y) dy ≤ πn.

It remains to sum over i = 1, . . . , 2n to prove Lemma 14.2.
Now we deduce the classical form of the Blaschke–Santaló inequality for convex bodies:

Corollary 14.6. Let K be a convex body in Rn with mass center at the origin, at let

K◦ = {y ∈ Rn : ∀x ∈ K (x, y) ≤ 1}
be its polar body. Then

volK · volK◦ ≤ v2
n,

where vn is the volume of the unit ball in Rn.

Proof. Consider the corresponding “norms” (note that ‖x‖ may not coincide with ‖−x‖):
‖x‖ = min{r ≥ 0 : x ∈ rK}, ‖x‖◦ = min{r ≥ 0 : x ∈ rK◦}.

The definition of the polar body means that for any x, y ∈ Rn

(x, y) ≤ ‖x‖ · ‖y‖◦.
Now we introduce two functions

f(x) = e−‖x‖
2/2, g(y) = e−‖y‖

2
◦/2

and check that
f(x)g(y) = e−‖x‖

2/2−‖y‖2◦/2 ≤ e−(x,y).

Also, f(x) has mass center at the origin. Hence, by Theorem 14.1 the product of their
integrals is at most (2π)n. Now we calculate by changing the integration order:∫

Rn

f(x) dx =

∫
Rn

∫ f(x)

0

1 dydx =

∫ 1

0

volK(−2 log y)n/2 dy = cn volK

for the constant cn =
∫ 1

0
(−2 log y)n/2 dy. The same holds for g(y):∫

Rn

g(y) dy = cn volK◦.

It remains to calculate cn, this is simple if we take the unit ball in place of K and the
Euclidean norm |x| in place of ‖x‖:

(2π)n/2 =

∫
Rn

e−|x|
2/2 dx = cnvn.

Hence

volK · volK◦ ≤ (2π)n

c2
n

= v2
n.

�

It is a famous problem (the Mahler conjecture) to establish the lower bound for centrally
symmetric convex bodies:

volK · volK◦ ≥ 4n

n!
,

which is an equality for the cube and the crosspolytope. Some known partial results on
this conjecture are summarized in the blog post by Tao [Tao07]. The best known result
is established by Greg Kuperberg [Ku08]:

(14.1) volK · volK◦ ≥ πn

n!
.
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15. Needle decomposition

Now we are going to consider an interesting tool in studying inequalities for measures,
the needle decomposition. The reader is referred to [NSV02] for a deeper review of this
subject.

The main result is the following theorem:

Theorem 15.1. For any two absolutely continuous finite measures µ and ν on Rn sup-
ported in a bounded convex set S and a prescribed ε > 0 it is possible to partition S into
some number of convex pieces P1, . . . , PN so that for every Pi

µ(Pi)

µ(Rn)
=

ν(Pi)

ν(Rn)

and one of the alternatives hold: Either Pi can be included into a ε-neighborhood of a line,
or not. But the total measure µ + ν of the parts satisfying the latter alternative is less
than ε.

A piece Pi in this theorem has small deviation from a line, so it looks like an almost
1-dimensional “needle”. This justifies the name “needle decomposition”.

Sketch of the proof. We start from the case n = 2. We can partition the two measures
with a line into equal halves. Then we can partition every part with another line so that
both measures are partitioned into equal fourths. Then we proceed this way many times.
Is we impose an additional technical assumption, say, that the sum of densities of µ and
ν is separated from zero on S, then it is easy to check that after an appropriate number
of steps all the parts Pi become ε-needles (ε-close to lines).

The technical assumption on positive density can be avoided as follows: Take some
positive δ and break the parts Pi into two categories: Those for which µ(Pi) + ν(Pi) >
δ volPi, the “essential” parts and all the other “inessential” parts. For the essential parts
after a definite number of steps, depending on ε and δ, we conclude that they are ε-
needles. For the inessential parts we observe that their total measure µ + ν is at most
δ volS, which can be chosen to be less than ε.

Now consider the case n > 2. For an (n − 2)-dimensional linear subspace L ⊂ Rn we
make the 2-dimensional partition of the 2-plane Rn/L into parts so that the essential parts
are ε/n-needles and the total measure of the inessential parts is small. The corresponding
partition in Rn is a partition with hyperplanes parallel to L.

Then the trick is to repeat this construction for different L’s passing sufficiently close
to any given (n − 2)-dimensional direction, also requiring that the total measure of the
inessential parts on the j’th step is at most ε/2j. The measures µ and ν get partitioned
into many equal pieces and it is possible to check that most of the parts cannot be
essentially two-dimensional (contain a two-dimensional disk of a prescribed size), while
the inessential parts together have total measure µ+ν less than ε. Indeed, if some essential
part Pi has a 2-dimensional disk D of radius ε/n inside, then we take the orthogonal to
the disk linear subspace LD ⊂ Rn and observe the following: Since we made hyperplane
cuts almost parallel to LD on some stage, this disk could not survive for the essential
parts. �

The useful observation is as follows. For every ε-needle part Pi we choose the line
`i, to which it is ε-close. If the measures µ were log-concave then their restrictions µi
and νi to the convex body Pi remain log-concave. Since Pi is almost one-dimensional
then it makes sense to consider the projections of µi and νi to `i, which become log-
concave measures in the line, by Theorem 12.1. And if the densities of µ and ν were
continuous, then this measure on the line approximates the original measures on Pi with an
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appropriate precision. Of course, by approximating measures the assumption of continuity
for the density can be dropped in most practical applications. To put it short, the needle
decomposition can sometimes reduce questions about pairs of log-concave measures on
Rn to pairs of log-concave measures in the line.

There is a more sophisticated version of the needle decompositions, called pancake
decomposition used, for example, in [Grom03]. Informally, when the number of measures
to partition increases then the “essential dimension” of the parts increases accordingly.

16. Isoperimetry for the Gaussian measure

Let us apply the needle decomposition to establish the isoperimetric inequality for a
Gaussian measure on Rn. After some rescaling any such measure obtains the density
e−π|x|

2
, which we like for its simplicity and normalization

∫
Rn e

−π|x|2 dx = 1. The cru-
cial property of the Gaussian measure is that the density of its orthogonal projection is
proportional to restriction of its density to any line.

Since the notion of the surface area does not make much sense for Gaussian measures
we formulate the “integrated” form of the isoperimetric inequality:

Theorem 16.1. For a Gaussian measure µ on Rn consider an open subset U and a
halfspace H of the same measure µ(H) = µ(U). Then for their ε-neighborhoods we have:

µ(Uε) ≥ µ(Hε).

Remark 16.2. Note that the value µ(Hε) depends on µ(H) and ε and does not depend on
the dimension n.

So we see that for the standard measure in Rn the “most round” body is the ball, and
for the Gaussian measure the “most round” body is the halfspace.

Sketch of the proof. Let Ū = Rn \ U be the complement of U . After making the needle
decomposition for two restrictions µ|U and µ|Ū we reduce the problem to a one-dimensional
problem, preserving the equality

µ(U ∩ Pi)
µ(Pi)

= µ(U) = µ(H).

The measure µ on Pi, after projection to `i, becomes a log-concave measure with density
ρ. Moreover, it is strongly log-concave in the following sense:

ρ((1− t)x1 + tx2) ≥ ρ(x1)1−tρ(x2)teπt(1−t)|x1−x2|
2

.

It is easy to check that the proof of Theorem 12.1 can be modified to prove that the strong
log-concavity is preserved under projections.

Now everything reduces to the following:

Lemma 16.3. Let µ be the probability measure on the line with density e−πx
2

and ν be
a strongly log-concave probability measure on the line. Consider an open subset U and a
halfline H such that µ(H) = ν(U). Then for their ε-neighborhoods we have:

ν(Uε) ≥ µ(Hε).

The proof of this lemma is left as a technical exercise for the reader. It makes sense to
approximate U with a union of intervals and then show that these intervals can be moved
to the left or to the right decreasing (ν(Uε))

′
ε. Finally all the intervals can be merged

into a single one either (−∞, t) or (t,+∞). In this case it is easy to verify that the value

(ν(Uε))
′
ε = ρ(t) is at least e−πx

2
, where

ν(U) =

∫ x

−∞
e−πξ

2

dξ.
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�

17. Isoperimetry and concentration on the sphere

It is interesting and important that on the round sphere Sn ⊆ Rn+1 the corresponding
version of Theorem 16.1 also holds:

Theorem 17.1. For a the uniform probability measure σ on Sn consider an open subset
U and a halfspace H ⊂ Rn+1 such that σ(H∩Sn) = σ(U). Then for their ε-neighborhoods
(in the geodesic path metric of Sn) we have:

σ(Uε) ≥ σ((H ∩ Sn)ε).

This means, in particular, that the minimal (n−1)-dimensional volume of ∂U for given
σ(U) is attained at spherical caps like H ∩ Sn. We do not give a proof here because it
depends on some deep results in Riemannian geometry, see the appendix to [MS86] by
M. Gromov, for example. The crucial notion here is the Ricci curvature of the Riemannian
metric, which equals n− 1 for the unit n-dimensional round sphere.

Another heuristic evidence for Theorem 17.1 is that, for large dimensions n, the Gauss-
ian measure with density e−π|x|

2
on Rn gets concentrated near the round sphere of radius√

n/π. After rescaling by
√
π/n we see that it “approaches” the measure σ and therefore

the isoperimetric inequality for the sphere is “asymptotically” correct.
The isoperimetric inequality has the following famous consequence, known as the con-

centration of measure phenomenon on the sphere:

Theorem 17.2. Let U ⊂ Sn have measure σ(U) ≥ 1/2. Then the measure of the neigh-
borhood σ(Uε) becomes almost 1 for ε of order

√
n, in particular the following estimate

holds:

σ(Uε) ≥ 1− e−
(n−1)ε2

2 .

In [Led01] it is shown that this theorem can be deduced from the isoperimetry of the
Gaussian measure using some analytical technicalities. Following [GM2001], we give a
simple proof of a weaker fact:

Proof of a weaker assertion. Consider the complement V = Sn \ Uε, note that the spher-
ical distance between U and V is at least ε. Now we pass to subsets of the unit ball Bn+1

defined as follows:

U0 = {x ∈ Bn+1 : x/|x| ∈ U}, V0 = {x ∈ Bn+1 : x/|x| ∈ V },
for their volumes we have (v = vn+1 is the volume of the unit ball here):

volU0 = vσ(U), volV0 = vσ(V ).

Consider the set X = 1
2
(U0 + V0), simple trigonometry shows that X consists of vectors

with lengths at most cos ε
2
, and therefore

volX ≤ v cosn+1 ε

2
= v

(
1− sin2 ε

2

)n+1
2 ≤ ve−

(n+1) sin2 ε
2

2 .

The Brunn–Minkowski inequality, in particular, gives volV0 ≤ volX, and therefore

vσ(V ) ≤ ve−
(n+1) sin2 ε

2
2 ,

which implies

σ(Uε) ≥ 1− e−
(n+1) sin2 ε

2
2 .

�
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A usual way to use the concentration on the sphere is the following (Lévy’s lemma):

Corollary 17.3. Let f be a 1-Lipschitz (|f(x)− f(y)| ≤ dist(x, y)) function on Sn, then
the measure of the set where f(x) differs from its median value Mf is estimated by

σ{x : |f(x)−Mf | ≥ ε} ≤ 2e−
(n−1)ε2

2 .

Informally, on most of the sphere the function f differs from Mf by at most O( 1√
n
).

Much more information about the concentration phenomenon on the sphere and many
other metric-measure spaces can be found in the book [Led01].

18. More remarks on isoperimetry

There are many other instances of the isoperimetric inequality. Here we just give a
brief sketch of them, for more details see the book [Lub94].

First, the isoperimetric inequality on Riemannian manifolds is connected through the
Cheeger–Buser inequalities to the smallest positive eigenvalue of the Laplace operator
(the Laplacian). Let us give some explanations without proofs. The Laplace operator for
differential forms on a smooth closed manifold M is defined as

∆ = dd∗ + d∗d,

where d∗ is the formal adjoint to the d operator on differential forms. It is easy to check
the characteristic property of the Laplace operator:∫

M

(ω,∆ω)ν =

∫
M

|dω|2ν +

∫
M

|d∗ω|2ν,

where ν is the volume form associated with the Riemannian structure. For functions this
reduces to ∆f = d∗df and ∫

M

f∆fν =

∫
M

|df |2ν.

From this formula (more precisely, for its version with f∆g) it is clear that ∆ is self-
adjoint and non-negative. Moreover, since we assume M to be compact and connected,
the only harmonic functions (i.e. satisfying ∆f = 0) are constant functions. Therefore
on the subspace

L2
0(M) =

{
f ∈ L2(M) :

∫
M

fν = 0

}
the Laplace operator is strictly positive. By some standard tools of functional analysis it
can be shown that ∆−1 is a compact operator on L2

0(M), and the smallest eigenvalue of
∆|L2

0(M) makes sense and is denoted by λ1(M). Therefore λ1(M) is the largest positive
number satisfying the following∫

M

|df |2ν ≥ λ1(M) ·
∫
M

|f |2ν, for all f such that

∫
M

fν = 0.

The connection to the isoperimetric inequalities now becomes more clear, since for a
partition M = A∪B into two subsets we can consider a functions almost constant on A,
almost constant on B, and changing in a reasonable way near the boundary ∂A = ∂B.
After normalizing it to have a zero mean, we may apply the definition of λ1(M) and
deduce some kind of isoperimetric inequality, showing that ∂A = ∂B is sufficiently large.

It is also possible to show the converse: By considering the sublevel sets Mc = {x ∈
M : f(x) ≤ c} and applying a certain kind of isoperimetric inequality to them, a lower
bound for λ1(M) follows by careful integration over c.



GEOMETRY OF MEASURES: PARTITIONS AND CONVEX BODIES 30

One particular case when the above construction simplifies greatly is the case of the
isoperimetry on graphs, which is the main topic of the book [Lub94]. First, the isoperi-
metric constant of a graph G = G(E, V ) is the number c such that

|E(A,B)| ≥ cmin{|A|, |B|}
for every partition of the set of vertices V = A ∪ B, where E(A,B) denotes the set of
edges between A and B. It can be easily proved that c(G) can be related to the smallest
positive eigenvalue of the graph Laplacian, this is left as an exercise for the reader. The
graph Laplacian is defined as follows: For a function f on vertices we put

∆f(y) = deg yf(y)−
∑

(x,y)∈E

f(x).

The only functions corresponding to the zero eigenvalue are constants and it is easy to
show that ∆ is self-adjoint and positive on the functions with zero mean. The correspond-
ing minimal positive eigenvalue is denoted by λ1(G).

Now we make the following definition:

Definition 18.1. A family of graphs Gn is called a family of expanders is |V (Gn)| → ∞ as
n→∞, the degrees of their vertices are uniformly bounded, deg v ≤ k for any v ∈ V (Gn),
and their isoperimetric constants c(G) (or the numbers λ1(G)) are uniformly bounded by
a positive number c.

Informally, the expander graphs are quantitatively more than connected, while having
the bounded degree of any vertex. The theory of expander graphs is large and interesting,
so here we only mention the main facts without proofs.

First, if we try to construct a bipartite graph on two sets of size n and connect any
vertex on the left hand side to some k vertices on the right hand side randomly, then,
as n tends to infinity, the probability to have of the inequality c(G) ≥ c > 0 tends to 1
if c < k/2. This means that appropriately constructed “random graphs” are expanders,
and this fact has serious practical applications.

Second, an explicit construction of expanders is rather difficult. The most usual way
is to consider an infinite discrete group Γ with a set of generators S and build its Cayley
graph G(Γ, S). Then take the set of quotients Γ/Nn by a family of normal subgroups
such that |Γ/Nn| → ∞ and consider the induced graph on Γ/Nn. It turns out that some
properties of the group Γ and its representations on the Hilbert space (the “Kazhdan
property T” or other similar properties) allow to prove that the constructed family of
graphs is a family of expanders. For the details (and many other interesting stuff, like the
Banach–Tarski paradox) the reader is referred to the already mentioned book [Lub94], or
other sources.

19. Šidák’s lemma

Here we are going to prove a useful fact about Gaussian measures, known as Šidák’s
lemma. We define a centrally symmetric strip in Rn as the set S = {x : |λ(x)| ≤ w}, for
some λ ∈ Rn∗ and w ∈ R+.

Theorem 19.1. Let A be a centrally symmetric convex body in Rn and S be a centrally
symmetric strip in Rn. Then for a Gaussian probability measure µ we have:

µ(A) · µ(S) ≤ µ(A ∩ S).

The key idea of the proof is to introduce a new probability measure ν(X) = µ(X∩S)
µ(S)

.

The inequality that we want to obtain is formalized in the following:
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Definition 19.2. Suppose µ and ν are two probability measures on Rn. We say that ν
is more peaked than µ if for any centrally symmetric convex body A

ν(A) ≥ µ(A).

Now the proof of Theorem 19.1 consist of two lemmas:

Lemma 19.3. If ν is more peaked than µ then for any centrally symmetric log-concave
density f we have ∫

Rn

f dν ≥
∫
Rn

f dµ.

Proof. Rewrite the integral:∫
Rn

f dν =

∫ f(x)

0

∫
Rn

1 dνdy =

∫ f(x)

0

ν(Cy)dy,

where Cy = {x : f(x) ≤ y}. For log-concave and centrally symmetric f the sets Cy are
convex and centrally symmetric, so the inequality follows by integration in y. �

Lemma 19.4. If the measure ν is more peaked than µ, as measures on Rn, and τ is a
finite centrally symmetric log-concave measure on Rm, then ν × τ is more peaked than
µ× τ on Rn+m.

Proof. Denote by x and y the points in Rn and Rm respectively. Consider a centrally
symmetric convex body A ⊂ Rn+m. The measure 1× τ is log-concave and its restriction
τ ′ to A is also log-concave and centrally symmetric. Hence by Theorem 12.1 the density

f(x) =

∫
{y:(x,y)∈A}

1 dτ

is log-concave and centrally symmetric, since it is the density of the projection of τ ′ to
Rn.

Now we observe that

ν × τ(A) =

∫
Rn

f(x) dν ≥
∫
Rn

f(x) dµ = µ× τ(A)

by Lemma 19.3. �

And the proof of Theorem 19.1 is complete by the following obvious:

Lemma 19.5. If µ is the Gaussian measure on the line and S is a centrally symmetric
segment then the measure defined by

ν(X) =
µ(X ∩ S)

µ(S)

is more peaked than µ.

Then it suffices to take the Cartesian product of the result of this last lemma with the
Gaussian measure on Rn−1 to obtain Theorem 19.1.

Remark 19.6. Note that it is conjectured (the Gaussian correlation conjecture) that The-
orem 19.1 can be generalized to the case of two arbitrary centrally symmetric convex
bodies A and B with the same inequality: µ(A) · µ(B) ≤ µ(A ∩B).

Another result related to the notion of “more peaked” is the lower bound for the section
volume of the unit cube Qn = [−1/2, 1/2]n:

Theorem 19.7. Let L be a k-dimensional linear subspace of Rn. Then the k-dimensional
volume of the section L ∩Qn is at least 1.
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Remark 19.8. The upper bounds on the section volume are harder to prove. It is known
that any hyperplane section of Qn has area at most

√
2. This result was extended to lower

values of k, but for some pairs (k, n) the precise upper bound is still not known. See the
review of K. Ball [Ball01] for the details of this and many other interesting facts.

Proof. Consider the uniform measure ν on Qn, and compare it with the Gaussian measure
µ with density e−π|x|

2
. Actually, ν is more peaked than µ, the proof is reduced to the

one-dimensional case by applying Lemma 19.4 and noting that any product of two such
measures (in possibly different dimensions) is log-concave.

Now take an ε-neighborhood Lε of L. By the definition of “more peaked” we obtain:

ν(Lε) ≥ µ(Lε).

This can be decoded as

vol(Lε ∩Qn) ≥
∫
Bn−k

ε

e−π|x|
2

dx,

where Bn−k
ε is the (n− k)-dimensional ball of radius ε. The right hand side for ε→ +0 is

asymptotically vn−kε
n−k. And the trick is that the k-dimensional volume of L ∩Qn may

be defined (following Minkowski) to be

volk L ∩Qn = lim
ε→+0

vol(L ∩Qn)ε
vn−kεn−k

.

It remains to note that the difference between vol(L ∩ Qn)ε and volLε ∩ Qn is o(εn−k)
(the proof is left to the reader) and the result then follows. �

20. Centrally symmetric polytopes

A usual way to apply the Šidák lemma (Theorem 19.1) is to analyze the behavior of
a centrally symmetric convex polytope in terms of its facets. Any such polytope K is
defined by a system of inequalities

|(ni, x)| ≤ wi, i = 1, . . . , N,

where ni are unit normal vectors to facets of K and wi are positive reals. Each such
inequality defines a strip and therefore Theorem 19.1 is applicable. For example, the
following lemma holds:

Lemma 20.1. Assume a centrally symmetric convex polytope K ⊂ Rn contains the unit
ball B and has 2N facets. Then it intersects more than a half of the sphere S of radius

c
√

n
logN

(for sufficiently large N), where c > 0 is some absolute constant.

Sketch of the proof. Choose a Gaussian measure with density
(
α
π

)n/2
e−α|x|

2
. An easy es-

timate using integration by parts shows that any strip Pi defined by |(ni, x)| ≤ wi has
measure (here we use wi ≥ 1)

µ(Pi) ≥
∫ 1

−1

√
α

π
e−αx

2

dx ≥ 1− 1√
πα

e−α.

It is known (for example, from the direct calculation of moments with gamma function
and the Chebyshev inequality) that this Gaussian measure is mostly concentrated around
the radius |x| =

√
n
α

. By Theorem 19.1

µ(K) = µ(P1 ∩ · · · ∩ PN) ≥ µ(P1) · · · · · µ(PN) ≥
(

1− 1√
πα

e−α
)N

,



GEOMETRY OF MEASURES: PARTITIONS AND CONVEX BODIES 33

so, in order to prove the lemma (that K intersects more than a half of a sphere of radius

c
√

n
logN

), we have to take α of order logN and check that µ(K) is greater than some

absolute positive constant, that is(
1− 1√

πα
e−α
)N
≥ c2,

or

(20.1) N log

(
1− 1√

πα
e−α
)
≥ c3

for a negative constant c3. Then we observe the value α = c logN with some c < 1
satisfies this inequality for sufficiently large N . �

Using Lemma 21.5 from the next section we conclude (the Figiel–Lindenstrauss–Milman
theorem):

Theorem 20.2. Let K be a centrally symmetric convex polytope with 2N facets and 2M
vertices, then

logN · logM ≥ γn

for some absolute constant γ > 0.

Proof. By Lemma 21.5 we assume that K contains the unit ball B and is contained in
the ball

√
nB. The dual body K∗, defined by

K∗ = {x ∈ Rn : ∀y ∈ K (x, y) ≤ 1},
is therefore contained in B and contains 1√

n
B. By Lemma 20.1 K intersects more than a

half of the sphere of radius r = c
√

n
logN

, and K∗ intersects more than a half of the sphere

of radius r∗ = c
√

1
logM

.

Note that the inequality r∗r ≤ 1 is what we need to prove. Assume the contrary:
r∗r > 1. Then for any x with |x| = r consider its renormalized x∗ = r∗ x|x| . Note that it

cannot happen that x ∈ K and x∗ ∈ K simultaneously, because (x, x∗) > 1. Hence either
K intersects at most half of the sphere Sr or K∗ intersects at most half of the sphere Sr∗ ,
which is a contradiction.

Small values of N and M , not suitable for Lemma 20.1, may be considered separately
in a similar fashion. �

In fact, the above lemma and theorem can be proved without the Šidák lemma by
estimating the surface areas of spherical caps. The idea is that a spherical cap may be
very close to a halfsphere in terms of distance and still have very small surface area. Then
we observe that the complement to a strip on a sphere is a pair of caps of small area,
and if the sum of all areas is at most half of the area of the sphere then Lemma 20.1
is established. This cap area estimate corresponds to the value α = c logN , while the
stronger estimate (20.1) was not fully used in the above proof.

However, the approach with caps requires writing down and estimating some integrals
of trigonometric functions, while the Šidák lemma allows us to work with simple expo-
nential expressions. Which is more important, a careful use of the Šidák lemma allowed
A. Barvinok [Barv11] to prove the following strengthening of Theorem 20.2: Under the
assumption of the above theorem the inequality N ≤ αn implies M ≥ eβn, for some
positive β = β(α).

Another result estimates from below the volume of a centrally symmetric polytope
containing the unit ball:
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Lemma 20.3. Assume a centrally symmetric convex polytope K ⊂ Rn contains the unit
ball B and has 2N facets. Then its volume is at least(

cn

logN

)n/2
vn,

(for sufficiently large N), where c > 0 is some absolute constant.

Proof. The intersection of K with the ball, bounded by the sphere from 20.1, is at least
half of this ball by volume. �

Corollary 20.4. Let K ⊂ Rn be a polytope with N vertices on the unit ball B. Then

volK◦

volK
≥
(

cn

logN

)n
.

Proof. We can replace K with conv{K ∪ −K} to make it centrally symmetric. At this
step the volume of K increases and the volume of K◦ decreases. So assume K centrally
symmetric with 2N vertices. Note that the polar K◦ has 2N facets and then

volK◦

volK
=

(volK◦)2

volK · volK◦
≥ (volK◦)2

v2
n

≥
(

cn

logN

)n
,

where we used Corollary 14.6 and Lemma 20.3. �

The same approach with more care allows to prove that logN can be replaced with
log(N/n)+1, as was shown by Gluskin in [Glu1988]. Bárány and Füredi in [BF87] proved
a similar result using different technique and deduced the following: Suppose we have a
black box, that for any point x ∈ Rn either asserts that x is inside the unknown convex
body K, or provides a separating hyperlane for K and x. From the above results we
conclude that an algorithm estimating the volume of K with such a black box needs a
huge number of queries to the black box. But it turns out that practically the volume
can be efficiently estimated with a randomized algorithm.

Another famous problem about centrally symmetric polytopes is to prove that the total
number of faces of all dimensions (including the polytope itself) is at least 3n. The reader
may easily check that this bound is attained for the cube or its dual, the crosspolytope.
In the case of simple or simplicial polytopes Stanley proved [Stan87] this conjecture using
the correspondence between the linear space spanned by the faces of a polytope up to a
certain equivalence relation and the cohomology ring of the corresponding algebraic (toric)
variety. Let us give a sketch for those knowing or willing to learn some toric geometry:
The symmetry of a polytope makes an action of the involution ι on the polytope P
and its corresponding toric variety XP . Let T = (C∗)n be the torus acting on XP .
Then it remains to compare the two descriptions of the T -equivariant cohomology of XP :
H∗T (XP ) = H∗(XP ) ⊗ H∗(BT ) from the collapsing spectral sequence, on the one hand,
and H∗T (XP ) is the Stanley–Reisner ring of P , that is something defined combinatorially
by P . From this it follows that the Hilbert series of the trace of ι on those spaces satisfies:

h(ι,H∗T (XP )) = h(ι,H∗T (XP )) · h(ι,H∗(BT )) =
h(ι,H∗T (XP ))

(1 + t)n
= 1.

Hence h(ι,H∗(XP )) = (1 + t)n and from this it is possible to deduce the lower bounds on
the numbers of faces, calculated from hP (t) = h(ι,H∗(XP )), see the details in [Stan87]
and [Cox11].
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21. Dvoretzky’s theorem

We are going to discuss one of the most famous applications of the concentration phe-
nomenon on the sphere, the Dvoretzky theorem:

Theorem 21.1. For a positive real ε and a positive integer k there exists another positive
integer n(k, ε) with the following property. If ‖ · ‖ is any norm on Rn then there exists a
Euclidean norm | · | on Rn and a k-dimensional linear subspace L ⊆ Rn such that

|x| ≤ ‖x‖ ≤ (1 + ε)|x|.

The proof needs several lemmas, of which we prove all but one. First, we will need
δ-nets on the sphere Sk−1.

Definition 21.2. A finite set X ⊂ Sk−1 is a δ-net, if for every x ∈ Sk−1

dist(x,X) ≤ δ.

In what follows we assume for simplicity that δ ≤ π/4 and assume k to be sufficiently
large.

Lemma 21.3. There exists a δ-net in Sk−1 of size at most k4k−1

δk−1 .

Proof. Find an inclusion maximal set of disjoint spherical caps of radius δ/2 (balls in
geodesic metric) in Sk−1. Let X be the set of their centers. Since we cannot add any
other spherical cap of radius δ/2 to the set, every point of Sk−1 is at distance at most δ
from some x ∈ X and therefore X is a δ-net.

Now we estimate |X| comparing the total surface area of the caps, which is at least
|X|vk−1(δ/4)k−1 (here we use that δ is not too big), to the surface area of the sphere
sk = kvk. Hence

|X| ≤ kvk4
k−1

vk−1δk−1
≤ k4k−1

δk−1

here we use that vk ≤ vk−1 for k ≥ 6, which can be seen from the explicit formula

vk = πk/2

Γ(k/2+1)
. �

Lemma 21.4. If X is a δ-net in Sk−1 and δ < π/4 then every x′ ∈ Sk−1 can be expressed
as a positive linear combination of vectors from X with sum of coefficients at most

√
2.

Proof. Let us prove that the ball B′ of radius 1/
√

2 is contained in convX. Assuming the
contrary by the Hahn–Banach theorem we obtain a vector y with |y| = 1/

√
2 such that

the set
Hy = {x : (x, y) ≥ (y, y)}

has no common interior point with convX. Then it is easy to see that the normalized
y/|y| is at geodesic distance at least π/4 > δ from X.

So we conclude that Sk−1 is inside
√

2 convX, which is equivalent to what we need. �

Lemma 21.5. Let K be a centrally symmetric convex body in Rn. Then there exists a
centrally symmetric ellipsoid E such that

E ⊆ K ⊆
√
nE.

Proof. Take as E the ellipsoid of maximal volume contained in K, the John ellipsoid.
After a linear transformation assume that E is a unit ball. If there exist a point x ∈ K
with |x| >

√
n than it can be shown by a straightforward calculation that after stretching

E in the direction of x and shrinking it in the orthogonal to x directions E can increase
its volume while remaining inside the set conv(E ∪ {x} ∪ {−x}) ⊆ B. �
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Now, in Theorem 21.1 we consider some norm on Rn. By Lemma 21.5 we choose the
ellipsoid E and define | · | to be the Euclidean norm with E as the unit ball. Then we
consider f(x) = ‖x‖ as a function of the sphere Sn−1, the conclusion of Lemma 21.5 reads
as

1√
n
≤ f(x) ≤ 1

on the sphere. The condition f(x) ≤ 1 (using the triangle inequality for the norm) means
that f is 1-Lipschitz on Sn−1. Let M be the median of f . For the following lemma we
only give a sketch of a proof:

Lemma 21.6. Under the above assumptions on ‖ · ‖ and | · |, generated by the John
ellipsoid, the median M of ‖ · ‖ has the lower bound

c

√
log n

n

with some absolute constant c.

See the discussion of this lemma in [Ball97]. A different approach to this difficulty
is to select an orthonormal (relative to | · |) base ei such that ‖ei‖ ≥ n−i

n
(this is the

Dvoretzky–Rogers lemma), then choose the linear span of the first n/2 of these vectors
as the new space to work in and establish an analogue of Lemma 21.6 for this subspace.
This is established using averaging of the expression ‖x1e1 + · · ·+ xnen‖ over all possible
changes of signs of the coordinates xi, along with the triangle inequality for the norm.
The details are given, for example, in [Led01, Section 3.5].

Proof of Theorem 21.1 assuming Lemma 21.6. By Corollary 17.3 (here σ is the probabil-
ity measure on Sn−1) for the set

C = {x ∈ Sn−1 : |‖x‖ −M | ≥Mε/8}
we have

σ(C) ≤ 2e−
(n−2)M2ε2

128 ≤ 2e−
c2ε2 logn

128 .

Now we take δ = ε/4 and choose a δ-net X on Sk−1, the latter is considered as the unit
sphere of the coordinate subspace Rk ⊂ Rn. Applying a random rotation ρ to X we see

the following: For any xi ∈ X the probability of the event xi ∈ C is at most 2e−
c2ε2 logn

128 .
If in total

2e−
c2ε2 logn

128 |X| < 1

then for some random rotation the whole X gets inside Sn−1 \ C. Then we choose L to
be the image ρ(Rk) and denote by S(L) the unit sphere of L. From the bound on |X| of
Lemma 21.3, the inequality condition is satisfied when

k16k−1

εk−1
e−

c2ε2 logn
128 < 1/2,

which is indeed true for sufficiently large n.
By Lemma 21.4 we conclude that for any x ∈ S(L), after a rescaling making the median

M equal 1,

‖x‖ ≤ ‖
∑
xi∈X

cixi‖ ≤
√

2 max
xi∈X
‖xi‖ ≤

√
2(1 + ε/8).

Hence, again using the triangle inequality for the norm, ‖·‖ on S(L) has Lipschitz constant
at most

√
2(1 + ε/8). It follows that the values of ‖ · ‖ on S(L) are between

(1− ε/8)− ε/4 ·
√

2(1 + ε/8)
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and
(1 + ε/8) + ε/4 ·

√
2(1 + ε/8).

For sufficiently small ε, after a slight rescaling of ‖ · ‖ we obtain the inequality

|x| ≤ ‖x‖ ≤ (1 + ε)|x|
for any x ∈ L. �

22. Topological and algebraic Dvoretzky type results

It was noted in [Mil88] that a simple proof for the Dvoretzky theorem would follow
from the following topological conjecture of Knaster [Kna47]:

Conjecture 22.1. For any finite set X ⊂ Sn−1 with |X| = n and any continuous function
f : Sn−1 → R it is possible to find a rotation ρ such that

f(ρx1) = · · · = f(ρxn),

where {x1, . . . , xn} are the points of X.

Some cases of this conjecture were confirmed: when X is an orthonormal basis, when
n = 3, when |X| is prime and the points of X form a two-dimensional regular polygon,
see the discussion in [DK11] for more details and references. But unexpectedly, in the
paper of Kashin and Szarek [KS03] a counterexample was constructed using some knowl-
edge about sections of a cube and similar things. A greatly simplified exposition of this
counterexample is given in [Mat10, Miniature 32].

Of course, if the conjecture were true we could take a δ-net on Sk−1 as X of size at most(
4
δ

)k
by Lemma 21.3. Then, assuming Conjecture 22.1, for n ≥

(
4
δ

)k
we could rotate X

and rescale the Euclidean norm to have the equality ‖x‖ = |x| for any x ∈ X. The rest
would follow from Lemma 21.4.

This approach could still pass if we establish the weak Knaster conjecture with a rea-
sonable estimate for the function n(m):

Conjecture 22.2. There exists a function n = n(m) with the following property. For
any finite set {x1, . . . , xm} ⊂ Sn−1 of size k and any continuous function f : Sn−1 → R it
is possible to find a rotation ρ such that

f(ρx1) = · · · = f(ρxm).

About this generalized conjecture, almost as little is known as about the original one.
In fact, already for m = 4 the existence of n(m) is only known for some very particular
types of sets {x1, . . . , xm}.

Another direction of Dvoretzky-type results is the “algebraic Dvoretzky theorem” from [DK11]:

Theorem 22.3. For an even positive integer d and a positive integer k there exists n(d, k)
such that for any homogeneous polynomial f of degree d on Rn, where n ≥ n(d, k), there
exists a linear k-subspace L ⊆ Rn such that f |L is proportional to the d/2-th power of the
standard quadratic form

Q = x2
1 + x2

2 + · · ·+ x2
n.

This theorem is very similar to the Dvoretzky theorem, but unlike the latter, it gives
a precisely “round” section for a polynomial. Unfortunately, the topological tools used
in its proof do not give any explicit bound on n(d, k). Moreover, it is not clear how to
deduce the Dvoretzky theorem from this result, even if the bound were reasonable.

On the other hand, for odd degree d it is proved with elementary topology [DK11] that
any homogeneous polynomial of degree d in n variables vanishes on some linear k-subspace
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with n = k +
(
d+k−1
d

)
. This fact is originally due to B.J. Birch [Bir57], who established it

by algebraic tools with a worse estimate for n(d, k).
Let us sketch the proof of the Birch theorem for a homogeneous polynomial P of degree

d in n variables. The space of all orthonormal k-frames in Rn is parameterized by the
Stiefel manifold Vn,k. For any frame (e1, . . . , ek) the polynomial

Pe(t1, . . . , tk) = P (t1e1 + t2e2 + · · ·+ tkek)

is a degree d homogeneous polynomial in k variables. The space W of all such polynomials
has dimension

(
d+k−1
d

)
. The correspondence e 7→ Pe makes an odd map from Vn,k to W .

Here odd is understood for Vn,k so that along with a frame (e1, . . . , ek) we can consider
the frame

−(e1, . . . , ek) = (−e1, . . . ,−ek).
Then one form of the generalized Borsuk–Ulam theorem (see [Mat03]) asserts that some
frame is mapped to zero (that is exactly what we need), provided the space Vn,k is

(dimW − 1)-connected. This is indeed the case when n ≥ k +
(
d+k−1
d

)
.

A similar proof works for the following result about “making a convex function sym-
metric”:

Theorem 22.4. Let X ⊂ Sk−1 be a centrally symmetric subset with |X| = 2m. If
n ≥ m + k and f : Sn−1 → R is a continuous function, then it is possible to find an
isometric copy ρ(X) ⊂ Sn−1 such that for any x ∈ ρ(X)

f(x) = f(−x).
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of all k-sets of discrete subsets of Rn. Journal of Combinatorial Theory, Series A 118(1):197–207,
2011.

[Ati83] M.F. Atiyah. Angular momentum, convex polyhedra and algebraic geometry. Proceedings of the
Edinburgh Mathematical Society (2), 26(2):121–133, 1983.

[Ball97] K. Ball. An elementary introduction to modern convex geometry. Flavors of Geometry. MSRI
Publications, 31, 1997.

[Ball01] K. Ball. Convex geometry and functional analysis. Handbook of the Geometry of Banach Spaces,
161–194, 2001.

[Ball04] K. Ball. An elementary introduction to monotone transportation. Geometric Aspects of Func-
tional Analysis, Lecture Notes in Mathematics 1850, 99–106, 2004.
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