
1. Segments in the line and axis-parallel rectangles

1.1 (Helly’s theorem in the line). Prove that if every two segments in a finite family of segments
in the line intersect then all the segments of the family have a common point.

1.2. Assume a finite family of segments in the line is given and no point in the line belongs to
more than k of the segments. Prove that the segments of the family can be colored in k colors
so that no two segments of the same color intersect.

1.3. Assume a finite family of segments in the line is given and of any k + 1 of them some
two intersect. Prove that there exists a set X of k points such that any segment of the family
contains at least one point of X, that is the family of segments is pierced by X.

1.4. Assume a family of axis-parallel rectangles in the plane is given. Prove that if any two
rectangles in the family intersect then the whole family has a common point.

1.5. Assume a family of axis-parallel unit squares in the plane is given, without k + 1 pairwise
disjoint. Prove that there exists a set X of 2k − 1 points such that the family of squares in
pierced by X.

1.6. Assume a family of axis-parallel squares (of arbitrary size) in the plane is given, without
k+ 1 pairwise disjoint. Prove that there exists a set X of 4k− 3 points such that the family of
squares in pierced by X.

1.7. ∗∗ Assume a family of axis-parallel rectangles (of arbitrary size) in the plane is given,
without k + 1 pairwise disjoint. Find a way to produce a set X of smallest possible size such
that the family of rectangles in pierced by X.

1.8. Assume a family of axis-parallel rectangles in the plane is given and any two of them can
be crossed by either a horizontal or a vertical line. Prove that there exists a pair of lines, one
horizontal and the other vertical, that crosses all the rectangles in the family.

2. Parity, angle counting, and Euler’s formula

2.1. Prove that two closed polygonal lines in the plane in general position intersect in an even
number of points. What is general position in this case?

2.2 (Jordan’s lemma for polygonal lines). Prove that a closed polygonal line in the plane without
self-intersections partitions the plane in two connected components.

2.3 (General case of Jordan’s lemma). ∗ Prove that a closed continuous curve in the plane
without self-intersections partitions the plane in two connected components.

2.4. A (not necessarily convex) polygon in the plane is a closed polygonal line without self-
intersections together with the bounded connected component of the plane it makes by Jordan’s
theorem. Prove that if a polygon has at least 4 vertices can be cut in two parts by a segment
between two of its vertices, and the segment will only touch the boundary of the polygon in its
endpoints.

2.5. Prove that a polygon in the plane can be cut (partitioned) into triangles with vertices at
the original vertices of the polygon.

2.6. Prove that a polygon with n vertices (an n-gon) has the sum of inner angles equal to

π(n− 2).

2.7. Assume N points are given in the interior of a square. Then the pairs of points, including
the vertices of the square, are connected by segments only intersecting each other in endpoints,
until it is impossible to draw such segments any more. Find the number of the segments drawn
this way, show that it only depends on N .
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2.8 (Euler’s formula). Prove that, for a connected graph drawn in the plane with edges only
intersecting each other in their endpoint vertices, the formula holds:

V − E + F = 2,

where V is the number of vertices of the graph, E is the number of edges, and F is the number
of regions graph partitions the plane.

2.9. Let real numbers D,A > 0 be given. Prove that it is impossible to partition the plane into
convex 7-gons, each having diameter at most D and area at least A.

2.10. Prove that if one of the restrictions, on diameter or on the area, in the previous problem
is dropped, the partition becomes possible.

2.11. Prove that if a square is partitioned into triangles, then some two of the triangles have a
whole common side.

2.12. Prove that a convex n-gon cannot be partitioned into less than n− 2 triangles.

2.13. Prove that a convex polytope in R3 with n vertices cannot be partitioned into less than
n− 3 tetrahedra.

3. Point and line sets in the plane

Definition 3.1. A point set in the plane is in general position if no three of them belong to
the same line. A set of (straight) lines in the plane is in general position if no three of them
have a common point and no two are parallel.

3.2. Any n lines in general position have n(n−1)
2

intersections points and partition the plane into
n(n+1)

2
+ 1 parts.

3.3. Let n lines in general position in the plane be given. We want to choose the direction on
every line so that the following holds: If we go along any line in its direction and put numbers
from 1 to n − 1 on the intersection points then no two equal numbers (coming from the two
lines) appear at the same point. For which numbers n is it possible?

3.4. Let n lines in general position partition the plane. Prove that it is possible to put the
nonzero positive and negative integers not exceeding n by absolute value in the parts so that
the, for any line, the sum of the numbers on one side and on the other side of it equals zero.
What happens if the lines are not in general position?

3.5 (Sylvester’s problem). Prove that if a finite point set in the plane does not belong to a
single line then there exists a line passing through precisely two points of the set.

3.6. Let a finite set of lines be given in the plane. Prove that either they all have a common
point, or they all are parallel, or there exists a point belonging to precisely two of them.

3.7. Let a finite family of red and blue lines in the plane be given. Assume no two two given
lines are parallel and through any intersection point of two lines of the same color there passes
a line of the other color. Prove that all the given lines in fact have a common point.

3.8. Let n points be given in the plane, not belonging to a single line. Assume we draw all
possible lines through pairs of the given points. Prove that we have drawn at least n lines.

3.9. ∗ What version of Sylvester’s problem makes sense for the points in R3?
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4. Convex polygons and convex sets

4.1. Prove that a convex polygon P can be partitioned into parallelograms if and only if it P
is centrally symmetric.

4.2. Prove that if a convex polygon P is partitioned into parallelograms then at least one of
the parallelograms has at least two sides on the boundary of P .

Definition 4.3. An affine diameter of a convex body K is a segment I ⊂ K such that K
contains no longer segment in the direction of I.

4.4. Prove that a segment I is an affine diameter of K ⊂ R2 if and only if its endpoint are on
the boundary of K and K is contained in a plank (an area between two parallel lines) with
endpoint of I on the boundary of the plank.

4.5. Prove that, for any convex bodyK ⊂ R2, there exists an affine diameter of in any prescribed
direction, and there exists an affine diameter through any prescribed point in the plane. Are
there sufficient conditions for the uniqueness?

4.6. Let A1A2 . . . An be a convex n-gon without parallel sides. For any side AiAi+1, (assuming
An+1 = A1) find the farthest from the line AiAi+1 vertex Ak and denote the triangle formed by
the side and the vertex by Ti. Prove that the triangles Ti (i = 1, . . . , n) cover the given n-gon.

4.7. Let A1A2 . . . An be a convex n-gon without parallel sides. For any side AiAi+1, (assuming
An+1 = A1) find the farthest from the line AiAi+1 vertex Ak and consider the sum of such
angles ∠AiAkAi+1. Prove that the sum is π.

4.8. Let A1A2 . . . An be a convex n-gon with all sides of equal length. Prove that there exists
at least two k = 1, . . . , n such that

∠Ak−1AkAk+1 ≥ ∠Ak−2Ak−1Ak ∠Ak−1AkAk+1 ≥ ∠AkAk+1Ak+2,

where we put A−1 = An−1, A0 = An, An+1 = A1, and An+2 = A2.

4.9. Let A1A2 . . . An be a convex n-gon with all angles equal. Prove that there exists at least
two k = 1, . . . , n such that

∠Ak−1AkAk+1 ≥ ∠Ak−2Ak−1Ak ∠Ak−1AkAk+1 ≥ ∠AkAk+1Ak+2,

where we put A−1 = An−1, A0 = An, An+1 = A1, and An+2 = A2.

5. Carathéodory’s, Radon’s, and Helly’s theorems and their analogues

5.1 (Carathéodory’s theorem). The convex hull of a set X ⊆ Rn is the set of all convex combi-
nations of points in X denoted by convX. Prove that

convX =
⋃

Y⊆X |Y |≤n+1

conv Y.

5.2 (Fenchel’s theorem). Assume in the previous theorem that the set X is connected and prove
that

convX =
⋃

Y⊆X |Y |≤n

conv Y.

5.3 (Colorful Carathéodory’s theorem by Bárány). Assume X0, . . . , Xn are subsets of Rn each
containing the origin in the convex hull. Prove that there exists a system of representatives
x0 ∈ X0, x1 ∈ X1, . . . , xn ∈ Xn such that

0 ∈ conv{x0, x1, . . . , xn}.
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5.4. Assume that X1, . . . , Xn are connected subsets of Rn each containing the origin in the
convex hull. Prove that there exists a system of representatives x1 ∈ X1, . . . , xn ∈ Xn such that

0 ∈ conv{x1, x1, . . . , xn}.

5.5 (Radon’s theorem). Prove that any set X of n+ 2 points in Rn can be partitioned into two
nonempty sets X = Y t Z so that

conv Y ∩ convZ 6= ∅.

5.6. t ≤ n+ 1 2t ≥ n+ 2. , X n+ 2 Rn X = Y t Z , |Z| = t

conv Y ∩ aff Z 6= ∅.

5.7 (Helly’s theorem). Let a finite family F of convex sets in Rn has the property that any
≤ n + 1 of the sets in the family have a common point. Prove that all the sets in F have a
common point, that is

⋂
F 6= ∅.. Is this true for infinite families?

5.8. Let X be a compact subset of Rn. Prove that if any ≤ n + 1 points of X can be covered
by a unit ball then the whole X can be covered by a unit ball.

5.9 (Jung’s theorem). Prove that any set X ⊂ Rn of diameter at most
√

2 + 2/n can be covered
by a unit ball.

5.10. Let X be a compact subset of Rn. Prove that if any ≤ n+ 1 points of X can be covered
by a unit ball not containing the origin then the whole X can be covered by a unit ball not
containing the origin.

5.11 (The center point theorem). Let a finite set X ⊂ Rn of N points be given. Prove that
there exists a point p ∈ Rn such that, for any half-space H 3 p, |X ∩H| ≥ N

n+1
.

5.12 (The colorful Helly theorem). Let some n + 1 nonempty finite families of convex sets
F0, . . . ,Fn have the property: Any system of representatives

C0 ∈ F0, . . . , Cn ∈ Fn

has a common point. Prove that at least one of the families Fi has a common point.

5.13 (Fractional Helly’s theorem in the plane). Prove that for any α ∈ (0, 1) one can find
β(α) ∈ (0, 1) satisfying the following condition: If in a family F of n convex bodies in the plane
at least α

(
n
3

)
triples have a common point then there exists a point in the plane belonging to

at least β(α)n sets of F . Prove that it is possible to choose β(α) so that limα→1−0 β(α) = 1.

5.14 (Tverberg’s theorem). Prove that any set X ⊂ Rn of (n + 1)(r − 1) + 1 points can be
partitioned into r nonempty parts, X = X1 t · · · tXr, so that

convX1 ∩ · · · ∩ convXr 6= ∅.

5.15. Let 3 red, 3 green, and 3 blue points be given in the plane. Prove that it is possible
to partitions the points into 9 triples, each consisting of different colors, so that the three
corresponding triangles have a common point.

5.16 (Colorful Tverberg’s theorem by Bárány and Larman). ∗∗ Let n red, n green, and n blue
points be given in the plane. Prove that it is possible to partitions the points into n triples,
each consisting of different colors, so that the n corresponding triangles have a common point.
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6. Piercing and Helly-type theorems for algebraic sets

6.1 (Strong Helly property of linear subspaces). Let V be a vector space of dimension n and let F
be a family of its linear subspaces. Prove that there exist at ≤ n representatives L1, . . . , Lm ∈ F
(m ≤ n) such that

m⋂
i=1

Li =
⋂
L∈F

L :=
⋂
F .

6.2. Let V be a vector space of dimension n, let F be a family of its linear subspaces, and let
S ⊂ V be an arbitrary subset. Prove that there exists ≤ n representatives L1, . . . , Lm ∈ F
(m ≤ n) such that

m⋂
i=1

Li ∩ S =
⋂
L∈F

L ∩ S = (
⋂
F) ∩ S.

6.3. Let S be an arbitrary set, let V be a vector space (under point-wise addition and multi-
plication) of functions S → K (for some field K) such that dimV = n. For any f ∈ V , denote
the zero set by Zf = {x ∈ S : f(x) = 0}. Let F be a family of subsets of S of the form Zf for
some f ∈ V . Prove that there exist ≤ n sets X1, . . . , Xm ∈ F (m ≤ n) such that

m⋂
i=1

Xi =
⋂
F .

6.4 (Helly’s theorem for finite sets). Let S be arbitrary set and let F be a family of its sub-
sets, every subset having at most n elements. Prove that there exist at most n + 1 subsets
X1, . . . , Xm ∈ F (m ≤ n+ 1) such that

m⋂
i=1

Xi =
⋂
F .

6.5. Prove that if a family of circles in the plane has the property that each ≤ 4 circles in the
family have a common point then all the circles in the family have a common point.

6.6. Prove that if a family of circles in the plane has the property that each ≤ 3 circles in the
family have a common point, and the family consists of at least 5 distinct circles, then all the
circles in the family have a common point.

6.7. Let a finite point set be given in the plane so that any ≤ 6 of the given points can be
crossed be a pair of lines. Prove that all the given points can be crossed by a pair of lines.

6.8. Let several graphs of polynomials of degree ≤ d be given in the plane. Prove that if any
≤ d+ 2 of the graphs have a common point then all the given graphs have a common point.

6.9. For a family of sets F , a set T is called a t-transversal if |T | ≤ t and any X ∈ F intersects
T . Let V be a vector space of dimension n, and let F be a family of its linear subspaces. Prove
that if any subfamily G ⊆ F of size |G| ≤

(
n+t−1

t

)
has a t-transversal then the whole F has a

t-transversal.

6.10. Let S be an arbitrary set, let V be a vector space of functions S → K (for some K) such
that dimV = n. For any f ∈ V denote the zero set by Zf = {x ∈ S : f(x) = 0}. Let F be a
family of subsets of S of the form Zf for some f ∈ V . Prove that if any subfamily G ⊆ F of
size |G| ≤

(
n+t−1

t

)
has a t-transversal then the whole F has a t-transversal.

6.11. Let S be an arbitrary set and let F be a family of its subsets, each having at most n
elements. Prove that if any subfamily G ⊆ F of size |G| ≤

(
n+t
t

)
has a t-transversal then the

whole family F has a t-transversal.
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6.12 (Linear Hall’s theorem). Assume finite subsets S1, . . . , Sn of a vector space V are given
with the following property: For any set of indices 1 ≤ i1 < i2 < · · · < ik ≤ n (including one
index) the linear span

〈Si1 ∪ Si2 ∪ · · · ∪ Sik〉
has dimension at least k. Prove that there exists a linearly independent system of representa-
tives si ∈ Si.

6.13 (Colorful Helly’s theorem for vector spaces). Let a vector space V has dimension n, let
F1,F1, . . . ,Fn be families of linear subspaces of V . Prove that for a family of representatives
L1 ∈ F1, . . . , Ln ∈ Fn and some j

L1 ∩ · · · ∩ Ln ⊆
⋂
Fj.

6.14 (Colorful Helly’s theorem for finite sets). Let S be an arbitrary set and let F0,F1, . . . ,Fn
be families of its subsets. Assume that all subsets in the families consist of at most n elements
and, for any system of representatives Xi ∈ Fi (0 ≤ i ≤ n),

n⋂
i=0

Xi 6= ∅.

Prove that for some i the intersection
⋂
Fi is nonempty.

6.15. Assume a family F of (affine) lines is given in Rn, every two having a common point.
Prove that either all lines of F lie in a two-dimensional affine plane or all the lines of F have
a common point.

6.16. Assume a family F of affine k-dimensional subspaces in Rn is given so that any ≤ k + 2
of the subspaces have a common point. Prove that

⋂
F 6= ∅.

6.17. Let a finite set of ≥ d + 1 points in the plane with pairwise distinct x coordinates be
given. Assume that any graph of a degree ≤ d polynomial through any d + 1 of the points
passes through at least one more of the given points. Prove that all the given points belong to
the graph of a polynomial of degree ≤ d.

6.18. Prove that, for any positive integer k, there exists a subset X ⊂ R3 of 2k+ 3 points such
that every plane through the origin has at least k of the given points strictly on each of its
sides.

6.19. Let n red and m blue lines in the plane be given and nm points of the intersection of lines
of different colors are marked. Assume a family of green lines crosses all the marked points but
precisely one. Prove that the number of green lines is at least n+m− 2.

6.20. For any two finite sets of reals, A and B, put

A+B = {a+ b : a ∈ A, b ∈ B}.

Prove that we have the inequality for the cardinalities of the sets

|A+B| ≥ |A|+ |B| − 1.

6.21. For two sets of residues modulo a prime p, A and B, put

A+B = {a+ b : a ∈ A, b ∈ B}.

Prove that we have the inequality for the cardinalities of the sets

|A+B| ≥ min{|A|+ |B| − 1, p}.
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7. Inequalities for volumes and integrals

7.1 (Brunn–Minkowski inequality in the line). Let X, Y ⊆ R1 be measurable sets, denote the
Lebesgue measure by vol. Prove the inequality

vol(X + Y ) ≥ vol(X) + vol(Y ),

where X + Y = {x+ y, x ∈ X, y ∈ Y }.

7.2 (Functional Brunn–Minkowski inequality in the line). Let f, g, h : R → R+ be measurable
functions and let t ∈ (0, 1). Assume that for any x, y ∈ R we have

h((1− t)x+ ty) ≥ f(x)1−tg(x)t.

Prove that ∫ +∞

−∞
h(x) dx ≥

(∫ +∞

−∞
f(x) dx

)1−t

·
(∫ +∞

−∞
g(x) dx

)t
.

7.3 (Functional Brunn–Minkowski inequality). Prove that the previous inequality holds for
functions of n variables and their integrals over Rn by induction in n.

7.4 (Brunn–Minkowski inequality for volumes). Prove that for any two measurable X, Y ⊆ Rn

and t ∈ (0, 1) we have

vol((1− t)X + tY ) ≥ vol(X)1−t · vol(Y )t.

Using scalings of X and Y and varying t show that

vol(X + Y )1/n ≥ vol(X)1/n + vol(Y )1/n.

7.5. Denote the t-neighborhood of X by Ut(X). Define the lower Minkowski surface area by

vol+n−1X = lim inf
t→+0

volUt(X)− volX

t
.

Prove that for X ⊂ Rn with boundary of class C2 this coincides with the Riemannian (n− 1)-
dimensional volume of the boundary.

7.6 (Isoperimatric inequality for the Minkowski surface area). Prove that for fixed volX the
minimum of vol+n−1X is attained when X is a ball. Write down the corresponding estimate for
the surface area through the volume.

7.7 (The Prékopa–Leindler inequality). Let a density function f : Rn → (0,+∞) be k-strongly
logarithmically concave for some k ≥ 0, that is

d2(log f) ≤ −2k(dx21 + · · ·+ dx2n)

in the sense of distributions. Prove that its “projection”

g(x1, . . . , xn−1) =

∫ +∞

−∞
f(x1, . . . , xn−1, xn) dxn

is also k-strongly logarithmically concave.

7.8. A Borel measure µ in Rn is logarithmically concave if

µ((1− t)X + tY ) ≥ µ(X)1−t · µ(Y )t

for any convex bodies X and Y . Prove that for a measure with density this is equivalent to the
logarithmical concavity of the density in the previous problem with k = 0.

7.9. ∗ Prove that a finite logarithmically concave µ in Rn can be approximated by projections
of the uniform measures on convex bodies.
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7.10. Let K and L be centrally symmetric convex bodies. Prove that the maximum of the
volume volK ∩ (L+ t) over the shift vectors t ∈ Rn is attained at t = 0.

7.11 (The Rogers–Shephard inequality). Prove for a convex body K ⊂ Rn that

vol(K −K) ≤
(

2n

n

)
volK.

7.12 (The Grünbaum–Hammer theorem). Prove that in a convex body K there exists a point
m ∈ K with the following property: Any half-space containing m contains at least 1/e of the
volume of K.

7.13 (The center point theorem for logarithmically concave measures). Prove that for a loga-
rithmically concave measure µ in Rn there exists m ∈ Rn with the following property: For any
half-space H 3 m,

µ(H) ≥ 1

e
µ(Rn).

7.14. ∗ Prove that, for a pair of convex bodies K and L, the expression

vol(K + tL)

is a polynomial in t ≥ 0. Prove that the coefficients of this polynomial are monotonic by
inclusion functions of K and L.

8. Polytopes

8.1. Prove that a bounded solution set of a system of linear inequalities in Rn is a polytope,
that is a convex hull of a finite point set.

8.2. A partition of Rn is called regular if it is given by projecting the graph of a piece-wise
linear convex function f : Rn → R, that is consist of the maximal regions of linearity of such a
function. Give examples of non-regular partitions of R2 into convex parts.

8.3 (Edelsbrunner’s theorem). Prove that any regular partition of Rn is ordered with respect
to any direction ν ∈ Sn−1, that is the parts can be ordered so that moving along any line in
direction ν the parts are met without contradiction to their ordering.

8.4. ∗ A regular partition of a set X ⊂ Rn is a restriction of a regular partition of Rn to X.
Prove that if Bn = P1 ∪ P2 ∪ · · · ∪ PN is a regular partition of a unit ball of some norm in Rn

then every Pi contains a ball (of that norm) of radius ri so that

r1 + r2 + · · ·+ rN ≥ 1.

8.5. ∗ Prove that in dimension 2 in Problem 8.4 the regularity assumption is not needed.

8.6 (The Kadets theorem). ∗∗ Prove that in arbitrary dimension, for a Euclidean ball in Problem
8.4, the regularity assumption is not needed and instead of partitions one may consider coverings
by convex sets.

8.7 (K. Bezdek’s conjecture, an unsolved problem). ∗∗ Prove that in any dimension and any
norm the regularity assumption in Problem 8.4 is not needed.

8.8 (Minkowski’s theorem, the equality). Assume a polytope P ⊂ Rn of full dimension has
facets F1, . . . , FN with respective normals ν1, . . . , νN and areas A1, . . . , AN . Prove that

ν1A1 + · · ·+ νNAN = 0.
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8.9 (Minkowski’s theorem, existence and uniqueness). ∗∗ Prove that is the set of normals and
areas satisfies

ν1A1 + · · ·+ νNAN = 0,

and the normals span the whole Rn then there exists a polytope with such a set of normals and
areas. Prove that the polytope is defined uniquely up to translations.

8.10. Let Rn be partitioned into translations of the same polytope P . Prove that P is centrally
symmetric.

8.11 (Voronoi’s conjecture, an unsolved problem). ∗∗

Let Rn be partitioned into translations of the same polytope P . Prove that this such a
partition is regular.

8.12 (The Bárány–Lovász theorem). ∗∗ A polytope in Rn is called simple if at any its vertex
precisely n edges meet. Prove that any centrally symmetric simple polytope in Rn has at least
2n vertices.

8.13 (Stanley’s theorem). ∗∗ Prove that any centrally symmetric simple polytope in Rn has at
least 3n faces of all dimensions, the polytope itself is considered a face.

8.14 (Unsolved problem). ∗∗ Prove that any centrally symmetric, not necessarily simple, poly-
tope in Rn has at least 3n faces of all dimensions, the polytope itself is considered a face.

9. Integer points

9.1. Prove that a convex 1000000-gon with integer vertices (both coordinates integer) has a
side of length at least 550.

9.2. Prove that is a polygon with integer vertices has all side lengths equal then it has an even
number of vertices.

9.3. Prove there does not exist regular n-gons with all vertices integer for n = 3, 5, 6.

9.4. Prove there does not exist regular n-gons with all vertices integer for n ≥ 7.

9.5. A finite set of points in the plane is given. For every three of them there exists an
orthogonal system of coordinates such that the three points have integer coordinates. Prove
that there exists an orthogonal system of coordinates such that all the given points have integer
coordinates.

9.6. Let a polytope P in Rn has all vertices integer and the number of vertices at least 2n + 1.
Prove that P contains another integer point other than its vertices.

9.7 (Integer Helly’s theorem). Let a finite family F of convex sets in Rn has the property: Any
2n or less sets in the family have a common integer point. Prove that all the sets of F have a
common integer point (Zn ∩

⋂
F 6= ∅.).

9.8 (Minkowski’s theorem). Let K be a centrally symmetric convex body in Rn of volume at
least 2n. Prove that K contains an integer point other than the origin.

9.9. ∗∗ Let K be a convex body in the place containing the origin in its interior and let K◦ be
its polar body. Assume that volK◦ ≤ 3/2. Prove that K contains an integer point other than
the origin.

9.10. ∗∗ (Unsolved problem) Let K be a convex body in Rn containing the origin in its interior.
Let volK◦ ≤ n+1

n!
for the polar body. Prove that K contains an integer point other than the

origin.
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10. Ramsey-type theorems

10.1. Prove that among
(
2k−4
k−2

)
+ 1 points of general positions in the plane one can choose k

points making a convex polygon.

10.2. Prove that in a set of 2n points in the plane one can choose three points making a triangle
with one angle at least

(
1− 1

n

)
π.

10.3. Prove that there exists an arbitrarily large general position point set in the plane, such
that it does not contain a set of seven points making a convex polygon without other points of
this set inside it.

11. Delaunay triangulations and Voronoi partitions

Definition 11.1. A not necessarily convex polygon F is triangulated if it is partitioned into
triangles so that every two triangles either do not intersect, or intersect in a single vertex, or
intersect in a whole side of both.

11.2. Prove that the convex hull of a finite point set X, not lying on a single line, can be
triangulated so that the set of vertices of the triangles of the triangulation coincide with X.

Definition 11.3. Consider triangulations of the convex hull of a finite point set X having
precisely X as the set of vertices of the triangles. Let us define a certain class of such trian-
gulations. A Delaunay triangulation is such a triangulation with the additional property that
the outscribed circle of any triangle of the triangulation has no points of X in its interior.

11.4. Prove that for any X, not lying of a single line, there exists a Delaunay triangulation
with vertices at X.

11.5. Prove that if X is in general position and no 4 of its points lie on a single circle then
two points A and B of X are connected by an edge in the Delaunay triangulation if and only
if there exists a ball K such that K ∩X = {A,B}. In this case the Delaunay triangulation is
unique.

11.6. Prove that any set of n points in the plane can be colored in at most 10 lnn colors so that
any ball intersecting the points contains precisely one point of some color.

Definition 11.7. The Voronoi partition for a finite point set X is the partitions of the plane
into sets {Vx}x∈X such that

Vx = {p : ∀x′ ∈ X |p− x| ≤ |p− x′|}.
This definition also works in higher dimension.

11.8. Assume X is a general position point set without 4 points on a single circle. What is the
relation bewteen the Voronoi partions of X and the Delaunay triangulation with vertices at X?

11.9. Assume a finite set of disjoint balls K1, K2, . . . , Kn is given in the plane. Prove that the
plane can be partitioned into convex parts C1, C2, . . . , Cn so that for any i = 1, 2, . . . , n we have
Ki ⊆ Ci.

11.10 (Edelsbrunner’s theorem). ∗ Consider a union of balls Bci(Ri) in Rn. For any such ball,
define a function

fi(x) = R2
i − |x− ci|2,

and a part

Pi = {x ∈
⋃
i

Bci(Ri) : ∀j fi(x) ≥ fj(x)}.
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Prove that the inclusion-exclusion formula can be simplified to give

vol
⋃
i

Bci(Ri) =
n+1∑
k=1

(−1)k−1
∑

Pi1
∩···∩Pik

6=∅

vol
(
Bci1

(Ri1) ∩ · · · ∩Bcik
(Rik)

)
.

12. Sets of vectors

12.1. Assume the points A1, A2, . . ., AN and B1, B2, . . ., BN are given in Rn. Prove that the
points Bi can be reordered so that for any i 6= j we will have (for the inner product of vectors)

AiAj ·BiBj ≥ 0.

12.2. Assume N vectors a1, a2, . . . , aN are given in the plane with all lengths at most 1. Prove
that it is possible to put + and − in place of ∗ in the expression

a1 ∗ a2 ∗ · · · ∗ aN ,

so that the result will have length at most
√

2.

12.3. ∗ Assume N vectors a1, a2, . . . , aN are given in Rn with all lengths at most 1. Prove that
it is possible to put + and − in place of ∗ in the expression

a1 ∗ a2 ∗ · · · ∗ aN ,
so that the result will have length at most

√
n.

13. Coverings and packings

Definition 13.1. For a closed convex set X, the width in direction ` is the length of the
projection of X to line `. The minimal width over all possible directions is usually called just
width.

13.2. Prove that, for two convex bodies X and Y the following statements are equivalent:
1) Width of X in any direction does not exceed the width of in the same direction Y ;
2) X + (−X) ⊆ Y + (−Y ) (in the sense of Minkowski sum).

13.3. Prove that in any convex body K ⊂ Rn there exists a point O such that any chord
AB 3 O (that is a segment with endpoint on ∂K) is split by O with ratio 1 : n ≤ α ≤ n : 1.

13.4. Let two convex bodies K and L be given in the plane and the width of K in any direction
is at most 1/2 of the width of L in the same direction. Prove that it is possible to put K into
L with a translation.

13.5. Let a finite point set X and a regular triangle T be given in the plane. Assume any two
points of X can be covered by a translate of T . Prove that the whole set X can be covered by
three translates of T .

13.6. Let a finite point set X and a regular triangle T be given in the plane. Assume any ≤ 9
points of X can be covered by two translates of T . Prove that the whole set X can be covered
by two translates of T .

13.7. Prove that any convex body K ⊂ Rn contains a translate of its homothet − 1
n
K.

13.8. Let a tetrahedron T be contained in a ball of diameter 1. Prove that its width in some
direction is at most 1/

√
3.

13.9 (Moese’s theorem). Prove that the planar ball of diameter 1 cannot be covered by planks
of total width less than 1. A plank is a region between two parallel lines.
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13.10 (The Goodman–Goodman theorem). ∗ Let a family of balls (in arbitrary norm) in Rn

has the following non-separability property : There exist no hyperplane that does not intersect
any of the balls and has some balls on both sides of it. Prove that a non-separable set of balls
of radii R1, R2, . . . , RN can be covered by one ball of radius R1 +R2 + · · ·+RN .

13.11 (The Kuperberg–Kuperberg theorem). ∗ Prove that, for any convex body K ⊂ R2, its
translates, together with the translates of −K, can be packed with density (the fraction of the
covered area in arbitrarily big balls) at least

√
3/2.

13.12. Prove that a connected graph in Rn drawn by segments of total length 2 in some norm
can be covered by a ball (in this norm) of radius 1.

13.13. Prove that a closed curve in Rn of length 4 in some norm can be covered by a ball (in
this norm) of radius 1.

13.14. Prove that if we have a closed curve on the boundary of the unit Euclidean ball B ⊆ Rn

of length less than 2π then it is possible to cover it with a ball of radius less than 1.
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